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Abstract

The tumor growth paradox refers to the observation that incomplete treatment of
cancers can enhance their growth. As shown here and elsewhere, the existence of
cancer stem cells (CSC) can explain this effect. CSC are less sensitive to treatments,
hence any stress applied to the tumor selects for CSC, thereby increasing the fitness
of the tumor. In this paper we use a mathematical model to understand the role of
CSC in the progression of cancer. Our model is a rather general system of integro-
differential equations for tumor growth and tumor spread. Such a model has never
been analysed, and we prove results on local and global existence of solutions, their
uniqueness and their boundedness. We show numerically that this model exhibits the
tumor growth paradox for all parameters tested. This effect becomes more relevant
for small renewal rate of the CSC.
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1 Introduction

Tumor stem cells, or cancer stem cells (CSC) have been identified in many
cancers, including carcinomas of the breast, brain, colon, prostate, pancreas,
ovary, as well as in sarcomas and in leukemia [5]. Stem cells in general are



pluripotent and they generate cells of various cell lineages. In the hematopoi-
etic system, for example, the progenitor cells are often classified as multipotent
progenitors who give rise to a lineage of transient, transient amplifying and
differentiated cells. In cancer these differentiation stages are more diffuse and
a clear distinction between these stages is often not possible. Hence, to investi-
gate the role of stem cells, we combine all non stem cancer cells into one group
called cancer cells (CC). While it is not always easy to identify cancer stem
cells, it is widely accepted that they are instrumental in tumor progression
and control. In fact, the control or eradication of CSC has become a focus for
treatment design [4].

In this article we develop and analyse a mathematical model for CSC and CC
which consists of a non-linear coupled system of integro-differential equations
(iDEs). Existence results for this coupled system are not readily available,
hence we prove mathematical properties on positivity, boundedness, existence
and uniqueness. We show numerically that this iDE model supports a tumor
growth paradox, i.e. the fact that a tumor with larger death rate for CC might
grow bigger than a tumor with lower CC death rate. We then analyse the sen-
sitivity of the tumor growth paradox on the spatial spread rates of the tumor
cells. We find that the tumor growth paradox arises for all tested parameter
values. It is more pronounced in cases of low mobility of the CSC and a low
renewal rate for CSC. Finally, we consider an example of incomplete radiation
treatment, where the tumor after radiation grows larger then it would have
grown if left untouched - the tumor growth paradox at work.

1.1 Modelling of cancer stem cells

Mathematical modelling is an established method to help to understand com-
plex biological systems. Related to tumor stem cells several models have
been developed recently [4,7,15,2,16,11,17]. Aspects of cancer stem cells that
are of importance to cancer progression include repopulation, treatment re-
sistance, stem cell differentiation, positive and negative feedback loops, de-
differentiation mechanisms, competition for oxygen and nutrients and spatial
arrangements. Mathematical modelling of all these aspects in one big model is
certainly possible, but its potential use is limited. The more detail we include,
the more specific assumptions and parameter values are needed. However,
mathematical modelling has the advantage that sub models can be studied on
their own, thereby allowing us to focus on one or two aspects at a time, which
is often impossible in vivo. In this paper we focus on the aspect of spatial
propagation and spatial crowding by cancer stem cells (CSC) and non-stem
cancer cells (CC).

In this context, Enderling et al. [6] developed an individual based cellular au-
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tomaton model, where individual cells are described by elements of a square
grid. Each grid point can be either a CSC or a CC or empty. Cells are able to
divide if a free grid cell is available near by, otherwise cells become dormant
(quiescent). Enderling et al. study the effect of spatial inhibition on the sim-
ulated tumor. If the death rate for the CC is low, then CC quickly surround
CSC, who in turn lose free space for replication. Hence they turn quiescent
until the whole tumor stops growing (or grows very slowly). If however, the
death rate for the CC compartment is increased, for example due to treatment,
then CSC find open space to grow into. They produce more CSC through oc-
casional symmetric divisions and as a result the tumor becomes bigger. The
effect that increased CC death can lead to a larger tumor has been termed
the tumor growth paradox. In fact it is commonly observed in clinical practice
that incomplete treatment can lead to an increased tumor burden after treat-
ment. Enderling et al. [6] point out that their result requires some movability
of CSC, otherwise the tumor growth paradox would not arise.

Hillen et al. [11] recast the dynamics of the cellular automaton model of En-
derling et al. [6] as a system of integro-partial differential equations (iPDE) for
continuous population densities of CSC and CC. While the system was devel-
oped in Hillen et al. it was not analysed there. Instead, Hillen et al. simplified
the iDE model into a (spatially homogeneous) system of ordinary differential
equations (ODEs). For this ODE system they used geometric singular pertur-
bation theory [10] to mathematically prove the existence of a tumor growth
paradox. The analysis of the full iPDE model for cancer stem cells was left
open and this is the topic of a recent paper by Maddalena [13] and the present
paper. We discuss Maddalena’s results later in Section 1.2 in Remark (4).

In the next Section 1.2 we will motivate the iDE model for CSC and CC
from biological principles. In Section 2 we will present a detailed mathematical
analysis of the above model. Under rather weak assumptions we can show that
continuous solutions exist, they are unique, and they depend continuously on
the initial conditions. The model contains a crowding term F (p) with crowding
capacity 1 and we can prove that solutions stay bounded between 0 and 1.

In Section 3 we showcase some numerical experiments of the above model.
We show clearly that the tumor growth paradox arises, i.e. a tumor with a
larger death rate for CC will outgrow a tumor with a lower death rate. The
reason is, that a larger death rate for CC leads to a selective advantage for
the CSC. Hence, a tumor with larger death rate for CC is CSC dominated,
while a tumor with lower death rate is CC dominated. We study the sensitivity
of the tumor growth paradox on the model parameters and we find that the
tumor growth paradox is more pronounced for slow moving CSC and in cases
where the CSC renewal rate is small. Larger spread of cells leads to a more
homogeneous distribution and to less effect of the tumor growth paradox.
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Additionally, we show some qualitative simulations for incomplete treatment
and we find scenarios where the tumor after treatment will grow bigger than
the corresponding untreated tumor.

This is, of course, not the final answer and the above model shows many
more interesting properties in both ways, mathematically as well as for the
application. In the concluding Section 4 we will discuss the relevance of our
findings, and possible future avenues of investigation.

1.2 The iDE model for CSC and CC

To motivate our iDE (integro-differential equation) model we first recall the
ODE model of Hillen et al. [11]

u̇ = δγF (p)u,

v̇ = (1− δ)γF (p)u+ ρF (p)v − αv,
(1.1)

with p = u + v, where u(t), v(t) denote time dependent densities of CSC
and CC, respectively. The parameter γ > 0 denotes the average mitosis rate
for CSC, while ρ > 0 describes the mitosis rate for CC; α > 0 denotes the
death rate of the CC cells. Death can be related to natural death or treatment
induced cell death. The parameter δ > 0 describes the average fraction of CSC
in the progeny of a CSC. There is no death term in the CSC compartment in
this model, since we assume that CSC are immortal and also are less sensitive
to treatment. It is an extreme case, and a small death rate for CSC could be
incorporated if needed. The F (p) term describes competition for space. F (p)
is a monotonically decreasing function describing the inhibitory effect of a cell
density p. If p exceeds a given crowding threshold p∗, then F (p) = 0 for all
p ≥ p∗. Here we normalize p∗ = 1.

Hillen et al. proved in [11] that the above model (1.1) shows a tumor growth
paradox, which, for this and more general cases we define as follows.

Definition 1.1 Let pα(t) denote the total tumor size at time t > 0, where
α ≥ 0 denotes the death rate of non-stem cancer cells (CC). The model exhibits
a tumor growth paradox if there exist death rates α1 < α2 and a time
interval (t1, t2), t2 > t1 > 0, such that pα1(0) = pα2(0) and

pα1(t) < pα2(t) for all t ∈ (t1, t2).

Hillen et al. [11] showed that (1.1) always has at least two steady states (0, 0)
and (1, 0) and a third steady state (0, v0) if the equation F (v0) = α has a
solution. The simplex S := {u ≥ 0, v ≥ 0, u + v ≤ 1} is positively invariant
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and the only global attractor in S is (1, 0). Hillen et al [11] used methods
from geometric singular perturbation theory [10] and showed that for small
δ > 0 there exists a slow manifold inside S which attracts each orbit. The
slow manifolds depend monotonically on α in such a way that the population
with the larger α value does grow slower hence implying the tumor growth
paradox. Enderling et al [6] argued that in their cellular automaton model
the tumor growth paradox needed some form of spatial random movement.
Hence, in this paper here, we include spatial redistributions expressed through
non-local integral terms to see if spatial movement would enhance, preserve
or remove the tumour growth paradox as compared to (1.1).

To make this model spatially dependent, we use the general framework of a
birth-jump process as introduced recently [12]. We describe spatial redistribu-
tion by an integral kernel k(x, y, p(x, t)). In our spatial model we assume that
at mitosis one daughter cell can take the location of the mother cell, while the
other daughter cell is transported to another location. This can be nearby, de-
pending on the kernel k(x, y, p(x, t)). The kernel k is a transitional probability
density in the sense that k(x, y, p(x, t))∆nx is the probability that a daughter
cell which is released at y settles in an n-dimensional volume element at x
with side length ∆x per unit of time. This probability depends on the local
density p(x, t) to describe the volume filling effect. We choose

k(x, y, p(x, t)) = K(x, y)F (p(x, t))

to separate redistribution K(x, y) and the crowding effect F (p). The spatial
model reads:

ut(x, t) = δγ
∫

Ω
k (x,y, p(x, t))u(y, t)dy, (1.2)

vt(x, t) = (1− δ)γ
∫

Ω
k (x,y, p(x, t))u(y, t)dy

+ρ
∫

Ω
k (x,y, p(x, t)) v(y, t)dy − αv(x, t), (1.3)

where
p(x, t) = u(x, t) + v(x, t). (1.4)

The spatial domain is denoted as Ω. The functions u(x, t) and v(x, t) represent
the densities of the cancer stem cells (CSC) and of the non-stem cancer cells
(CC), respectively. The parameters γ > 0 and ρ > 0 are the replication rates
of the two families of cells; δ, 0 < δ < 1, is the average fraction of CSC in
the progeny of a CSC; α is the mortality rate of the differentiated cells, and
k(x,y, p(x, t)) is the probability density that a cell located at y generates a
cell at x. We assume k(x,y, p(x, t)) = K(x,y)F (p(x, t)), where

(A.1) F (p) ranges in [0, 1] and is a non-negative non-increasing Lipschitz contin-
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uous function such that F (0) = 1, F (1) = 0, F (p) > 0 for any p in (0, 1)
and F (p) = 0 for p > 1.

(A.2) K ≥ 0, K ∈ C(Ω̄, Ω̄), and
∫
Ω K(x,y)dy ≤ 1.

Remarks:

(1) Notice that system (1.2), (1.3) is not equipped with any boundary con-
ditions. Since it is an integro-differential equation, boundary conditions
are implemented by the use of the redistribution kernel K. For example,
Dirichlet boundary conditions on a bounded domain Ω correspond to
kernels that might have support outside of the domain Ω. Then particles
moving out of the domain will be lost permanently. Homogeneous no-
flux conditions can be employed by requiring that redistribution always
happens inside Ω, i.e.∫

Ω
K(x,y)dx = 1, for all y ∈ Ω. (1.5)

(2) Model (1.2), (1.3) falls into the class of birth-jump processes, which were
introduced recently in [12]. In a birth-jump process the population growth
and population spread are no longer independent processes. On the con-
trary, it is assumed that newly generated individuals are redistributed
instantly. It should be noted that this choice does include standard dif-
fusion terms as special cases. For example if the kernel has the form
K(|x − y|) and if K is highly concentrated, then a diffusion approxi-
mation of the integral can be performed. In fact, this will be done in a
forthcoming paper, where we study invasion waves for a reaction-diffusion
version of the above model.

(3) An advantage of the formulation of the above redistribution kernels is the
fact that the quality and local occupancy of the target site can be directly
included into the model. If the habitat is inhomogeneous and includes
possible uninhabitable patches, then this can be expressed through the
choice of K(x,y). In the context of cancer metastasis, the existence of
niches for metastasis is discussed. Niches are favourable environments,
where daughter tumors can form [9], and this can be expressed through
the kernel K(x,y).

(4) In the original integro-partial differential equation of Hillen et al.[11] the
model equations (1.2, 1.3) also contain diffusion terms. If we abbreviate
the integral terms as a ? product k ? u =

∫
Ω k(x, y, p(x, t))u(y, t)dy, then

the corresponding model is

ut = du∆u+ δγk ? u

vt = dv∆v + (1− δ)γk ? u+ ρk ? v − αv
(1.6)

where Ω is a smooth bounded domain. Maddalena [13] studies this model
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under von Neumann boundary conditions of the form

∂u

∂n
=
∂v

∂n
= 0, (1.7)

where n denotes the outer normal on ∂Ω. Based on general assumptions
on the kernel k the integral operators are compact operators on the Ba-
nach space H2(Ω). The system (1.6) appears as heat equation with a
compact and Lipschitz continuous perturbation. The solution theory for
perturbed parabolic problems is available and Maddalena [13] uses these
methods to show results on existence, uniqueness, smoothness and invari-
ant sets. Maddalena did not discuss how the homogeneous von Neumann
boundary conditions (1.7) relate to possible boundary flux from the inte-
gral terms. It would be an interesting topic for future research to investi-
gate the boundary conditions coming from the integral terms in relation
to the classical conditions stemming from the diffusion terms. Since in
our model (1.2, 1.3) we have no diffusion terms, we focus on the integral
conditions such as (1.5). In our case we study du = dv = 0. Then the
leading order terms are the integral terms. The regularity theory for uni-
form parabolic equations is no longer available and we find it necessary
to develop a full solution theory here.

2 Existence, uniqueness and boundedness

The above equations (1.2), (1.3) form a non-linear integro-differential equation
system. A general existence theory for these type of systems has not yet been
developed, hence we present a full solution theory here. We use a fixed-point
argument to find unique continuous solutions. First we derive some prelim-
inary estimates, which also show continuous dependence of solutions on the
initial conditions and uniqueness. We refine our a-priori estimates to show that
solutions stay in the interval [0, 1] for all time, if the initial conditions were in
this interval. Finally, in Section 2.2 we construct a contraction mapping whose
fixed point is a solution of (1.2), (1.3).

We assume that the initial conditions

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω, (2.1)

satisfy the following assumptions

(B.1) u0(x), v0(x) ∈ C(Ω̄),
(B.2) u0 ≥ 0, v0 ≥ 0, u0 + v0 ≤ 1.

The existence problem of solutions for (1.2),(1.3) can be stated as:
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Problem (P). Find a pair u(x, t), v(x, t) such that, for any T > 0
• u, v ∈ C(Ω̄× [0, T ]);
• u ≥ 0, v ≥ 0, u+ v ≤ 1, in Ω̄× [0, T ];
• u and v solve the initial value problem (1.2), (1.3), (2.1).

It is quite useful to replace the v-equation in (1.3) by an equivalent equation
for p = u+ v:

pt(x, t) =
∫

Ω
k (x,y, p(x, t)) [(γ − ρ)u(y, t)− ρp(y, t)] dy−α [p(x, t)− u(x, t)] .

(2.2)

2.1 A-priori estimates and uniqueness

We begin with a rough a-priori estimate.

Lemma 2.1 Under assumptions (A) and (B.1) any solution to (1.2), (1.3),
(2.1) is a priori bounded, for bounded t.

Proof. Let us define

‖ u ‖t= max
Ω̄×[0,t]

|u(x, τ)|, ‖ v ‖t= max
Ω̄×[0,t]

|v(x, τ)|. (2.3)

From (1.2), (2.1) we have

‖ u ‖t≤ max
Ω̄
|u0|+ δγ

∫ t

0
‖ u ‖τ dτ,

where we used the normalization condition
∫
K(x, y)dy ≤ 1. Then from Gron-

wall’s Lemma we obtain

‖ u ‖t≤ max
Ω̄
|u0| eδγt ≡ U(t). (2.4)

Passing to (1.3), we introduce

z(x, t) = v(x, t)eαt (2.5)

so that

zt(x, t) = (1− δ)γF (p)eαt
∫

Ω
K(x,y)u(y, t)dy (2.6)

+ρF (p)
∫

Ω
K(x,y)z(y, t)dy

We obtain the estimate

|zt(x, t)| ≤ (1− δ)γeαtU(t) + ρ ‖ z ‖t
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and consequently

‖ v ‖t≤ max
Ω̄
|v0| e(ρ−α)t + (1− δ)γmax

Ω̄
|u0|e(ρ+γδ)t ≡ V (t). (2.7)

�

In deriving the above estimates we replaced F (p) by 1, thus obtaining a rough
estimate, which is exponentially growing in time. We will show later that u
and v are indeed uniformly bounded by 1.

At this point we are in a position of proving the following result on continuous
dependence on initial conditions:

Theorem 2.1 Let u(i), v(i) solve (1.2), (1.3) with data u
(i)
0 , v

(i)
0 , i = 1, 2,

and let assumptions (A) and (B.1) be satisfied. Denote by ∆u, ∆v, ∆p the
differences u(1) − u(2), etc. Then

‖ ∆u ‖t + ‖ ∆v ‖t≤ Gegt max
Ω̄

[∆u0 + ∆v0] , (2.8)

where G, g are known constants.

Proof. Following the same procedure which we used to get (2.4) we obtain

‖ ∆u ‖t≤ eδγt max
Ω̄
|∆u0|+ U(t)

∫ t

0
L ‖ ∆p ‖τ dτ, (2.9)

where L is the Lipschitz constant of F (p) and U(t) (see 2.4) is the larger of
the upper estimates for u(1) and u(2). Moreover, we get

|∆zt| ≤ eαtγ(1−δ) {‖ ∆u ‖t +LU(t) ‖ ∆p ‖t}+ρ ‖ ∆z ‖t +ρLV (t)eαt ‖ ∆p ‖t,

where z(i) are defined according to (2.5). Thus, ‖ ∆z ‖t can be estimated via
Gronwall’s Lemma and we get

‖ ∆v ‖t≤ eρt
{

max
Ω̄
|∆v0|+ eδγt max

Ω̄
|∆u0|

}
+ b1e

b2t
∫ t

0
‖ ∆p ‖τ dτ, (2.10)

for some known constants b1, b2.

Summing (2.9) and (2.10) we get an inequality in terms of ∆p and using again
Gronwall’s Lemma we conclude the proof. �

As a consequence, we have uniqueness:

Corollary 2.1 Under assumptions (A) and (B.1) system (1.2), (1.3) with
data (2.1) has at most one solution.

Sharper estimates on the bounds of u and v are summarized in the following
Lemma:
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Lemma 2.2 Assume (A), (B.1) are satisfied and let u, v solve equations (1.2),
(1.3) in Ω× (t1, t2) for some 0 ≤ t1 < t2.

(1) If u(x, t1) ≥ 0, v(x, t1) ≥ 0 for all x ∈ Ω, then

u(x, t) ≥ 0, v(x, t) ≥ 0, in Ω× [t1, t2]. (2.11)

(2) Assume that 1 ≥ u(x, t1) ≥ 0, 1 ≥ v(x, t1) ≥ 0 for all x ∈ Ω, then
(i) if u(x̂, t1) = p(x̂, t1) = 1, for some x̂ ∈ Ω, then u(x̂, t) = 1, v(x̂, t) =

0, for t ∈ [t1, t2].
(ii) if u(x̂, t) < 1, for some x̂ ∈ Ω, then u(x̂, t) < 1, for t ∈ [t1, t2].

(3) If p(x̂, t1) < 1, for some x̂ ∈ Ω, then p(x̂, t) < 1, for t ∈ (t1, t2),
(4) If v(x̂, t1) < 1, for some x̂ ∈ Ω, then v(x̂, t) < 1, for t ∈ (t1, t2).

Proof.

(1) Let us start by assuming that

u(x, t1) ≥ ε > 0, z(x, t1) ≥ ε > 0, x ∈ Ω, (2.12)

(where z is defined by (2.5)), for some ε ∈ (0, 1). Let t̄ ∈ (t1, t2) be the
first time for which there exists an x̄ ∈ Ω̄ such that u(x̄, t̄) = 0. But
since (1.2) ensures that ut ≥ 0 as long as u ≥ 0, the solution cannot
decay below 0 and u(x, t) ≥ 0. The same argument shows that z ≥ 0 in
Ω × [t1, t2], so that v(x, t) ≥ 0. Letting ε go to zero and using Theorem
2.1 concludes the proof of part (1).

(2) To show (i) we get from item (1) that u ≥ 0. Hence ut(x̂, t) ≥ 0 for all
t ∈ (t1, t2) and consequently u(x̂, t) ≥ 1, for all t ∈ (t1, t2). But since item
(1) ensures v(x̂, t) ≥ 0 we obtain p(x̂, t) ≥ 1 and then F (p(x̂, t)) = 0 in
(t1, t2). This implies that ut = 0 and u = 1 in the whole interval.

To prove (ii), assume t̄ be the first time in (t1, t2) such that u(x̂, t̄) = 1.
From item (1) we have

v(x, t) ≥ 0, 0 ≤ u(x, t) ≤ p(x, t), in Ω× [t1, t2],

and hence

0 ≤ ut(x, t) ≤ δγF (u(x, t)), in Ω× [t1, t2].

Since F is the Lipschitz continuous and F (1) = 0, we conclude that the
value u = 1 cannot be reached in a finite time.

(3) We note that the previous results ensure that u(x̂, t) < 1, for t ∈ (t1, t2).
Thus, if t̂ is the first time such that p(x̂, t̂) = 1, we would have v(x̂, t̂) > 0
and, because of (2.2), pt(x̂, t̂) = −αv(x̂, t̂) < 0, leading to a contradiction.

(4) A similar argument as used in item (3) gives item (4).

�
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Now we can apply the above a-priori results to any solution of Problem (P)
if (A) and (B) are satisfied, just letting t1 = 0 in the previous Lemmas. We
summarise these facts in the following result on global bounds:

Theorem 2.2 If (A) and (B) are satisfied, then for any solution of Problem
(P) we have

(1) The “saturated” regions (i.e. regions where p = 1) exist only if they exist
initially, and never expand.

(2) Saturated regions shrink if and only if they contain non stem cancers cells.
(3) All solutions of (1.2), (1.3), (2.1) are solutions of Problem (P). Assump-

tion (B) on the data together with the results of this Section ensure that
u ≥ 0, v ≥ 0, u+ v ≤ 1, in Ω× [0, T ].

2.2 Existence

Theorem 2.3 Under assumptions (A), (B), Problem (P) has a unique global
solution.

Proof. We use a fixed point argument to show that system (1.2), (1.3), (1.4)
has a unique solution (u, v) in a subset of the space ΛT = C(Ω̄ × [0, T ]) ×
C(Ω̄× [0, T ]) for T small enough. Then the results of the previous Section will
guarantee that the same pair actually solves Problem (P) (i.e. u, v are in the
physical range) and has all the properties shown there (including continuous
dependence on the initial data).

Proceeding as in the previous Section, we already know that, if we prescribe
p(x, t) in (1.2), (1.3), the possible solutions of the corresponding system satisfy
the a-priori bounds

‖ u ‖t≤
(

max
Ω̄

u0

)
eδγt ≡ U(t). (2.13)

‖ v ‖t≤
1− δγ
α + δγ

(
max

Ω̄
u0

) [
eδγt − e−αt

]
eρt +

(
max

Ω̄
v0

)
e(ρ−α)t ≡ V (t). (2.14)

Thus we can take a pair (u, v) ∈ ΛT such that u(x, 0) = u0(x), v(x, 0) = v0(x),
and respecting the bounds (2.13), (2.14). We denote such a subset by Λ0

T . We
use p = u+ v in (1.2), (1.3) and we look for a solution (ũ, ṽ) of

ũt(x, t) = δγF (p(x, t))
∫

Ω
K (x,y) ũ(y, t)dy, (2.15)

ṽt(x, t) = (1− δ)γF (p(x, t))
∫

Ω
K (x,y) ũ(y, t)dy +

ρF (p(x, t))
∫

Ω
K (x,y) ṽ(y, t)dy − αṽ(x, t), (2.16)
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in the same space Λ0
T .

Since (2.16) is now a linear equation, the existence of the pair (ũ, ṽ) is easily
shown using a simple fixed point argument. All we have to do is to analyse
the differences ∆ũ = ũ(1) − ũ(2), ∆ṽ = ṽ(1) − ṽ(2) corresponding to the pairs
(ũ(1) − ũ(2)), (ṽ(1) − ṽ(2)) generating the sums p(1), p(2).

We have that ‖ ∆ũ ‖t, ‖ ∆ṽ ‖t satisfy a system of Gronwall type inequalities
with free terms of the form∫ t

0
(‖ ∆u ‖τ + ‖ ∆v ‖τ ) Γ(τ)dτ,

where Γ(τ) is either U(τ) or V (τ) times some constant. These are the only
terms including ‖ ∆u ‖t and ‖ ∆v ‖t . Then we can select T such that the
mapping (u, v)→ (ũ, ṽ) is a contraction in Λ0

T .

Once we have proved existence for sufficiently small T , we can say that u(x, T ),
v(x, T ) satisfy the same assumptions as u0(x), v0(x). The nonlinearity F and
the kernel K are bounded, therefore the argument can be iterated, yielding
global in time existence. �

3 Numerical examples

We use numerical simulations of the integro-differential equations (1.2), (1.3)
to illustrate two effects. First we show that this model shows the tumor-growth
paradox. A larger death rate of CC will eventually lead to a larger tumor.
This effect was already found in the in silico-model of Enderling [6] and in the
ordinary differential equation model of Hillen et al. [11]. Here we confirm that
this effect also exists in the integro-differential formulation. We also find that
the tumor with larger death rate is stem cell rich, in contrast to the case of
a low death rate. We investigate the sensitivity of the tumor growth paradox
on the model parameters. We find that this paradox exists for all considered
parameter combinations, however in many cases it is not very pronounced.

Secondly, we study one illustrative example of an incomplete radiation treat-
ment. After a rather short time we see that the treated tumor grows larger
than it would have been without treatment. Both observations reinforce the
importance of the stem cell compartment and its increased resistance to treat-
ment modalities.

Equation (1.2), (1.3) are solved for x ∈ [−L,L], and t ∈ [0, 200]. We choose a
standard linear volume filling term ([14])

F (p) = (1− p)+ = max(0, 1− p), (3.1)
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and Gaussian redistribution kernels

Ku(x, y) =
1

σu
√
π
e
−

(x− y)2

σ2
u , Kv(x, y) =

1

σv
√
π
e
−

(x− y)2

σ2
v , (3.2)

where σu, σv are the standard deviations. To solve system (1.2), (1.3) we used a
finite difference scheme, with an explicit forward method in time. The integrals
appearing in the equations were computed by the trapezoidal rule.
The initial data were chosen to describe a concentrated tumor mass in the
center of the domain which consists of stem cells only:

u0(x) = e−10x2 and v0(x) = 0. (3.3)

The following parameter values define our standard parameter set

δ = 0.2, σu = 0.5, σv = 0.1, γ = 1.0, ρ = 0.5. (3.4)

We vary the death rate α between two representative values, a small value of
α = 0.2 and a large value of α = 2.

The following examples show the sensitivity of the system to the mortality
rate α and, in particular, the possible appearance of the tumor growth paradox
after a suitable time.

3.1 Evidence of the tumor growth paradox

The distribution of u, v, p at selected times are reported in Figure 1 for α = 0.2
and in Figure 2 for α = 2. For small α value (α = 0.2 in Figure 1) we see that
the invasion wave is dominated by CC, whereas in the centre the stem cell
population establishes dominance. This behavior is quite different for large
α = 2 (Figure 2), where the invasion is clearly stem cell dominated and the
non-stem cancer cells play only a minor role at the invasion front. To elucidate
the appearance of the tumor paradox, we consider the total population of
tumor cells, namely

Π(t) =
∫ L

−L
p(x, t)dx (3.5)

and look for its time evolution, in dependence on α (Fig. 3, left). The occur-
rence of the tumor growth paradox is evident around t = 60. The population
with a lower death rate α initially grows faster, but eventually is exceeded by
the populations with the higher α value.

To show the tumor growth paradox from a different point of view, the evolution
of points tracking a fixed value of p was also computed. In Fig.3, right, the
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80%- level set of p is shown

x[p=0.8](t) = {x∗ ∈ [0, L] : p(x∗, t) = 0.8} (3.6)

for α = 0.2 and α = 2. The slope of the corresponding curves is a measure
for the invasion speed. Clearly, the curve for larger α has a larger invasion
speed. We plan to use a forthcoming paper to study the invasion travelling
wave speeds in detail.
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Figure 1. Plot of u, v, p at selected time instants, with initial conditions (3.3) and
parameters from (3.4). Case α = 0.2. Detail of space interval [−30, 30].

3.2 Dependence on model parameters

To investigate how the tumor growth paradox depends on the model param-
eters, we investigate a whole range of parameter sets. We found that a faster
spread of the stem cells, expressed by an increased the variance σu, increases
the tumour spread, but decreases the tumour growth paradox. By a decreased
tumor growth paradox we mean that the difference in population sizes be-
tween α = 0.2 and α = 2 is reduced as compared to models with smaller
σu. In Figure 4 we compare the simulations at time t = 100 for α = 0.2 and
σu = 0.5 (left) and σu = 1 (right). The spread in Figure 4 (right) is faster
than the spread on the left. Still, the invasion is CC dominated. In the case
of α = 2 we also observe increased invasion speeds for σu = 1, but in this case
the invasion is CSC dominated (see Figure 5).

A variation of the spread rate for v, σv, only has a minimal effect on the
simulation results (not shown). However, a variation of the rate of CSC renewal
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Figure 2. Plot of u, v, p at selected time instants, with initial conditions (3.3) and
parameters from (3.4). Case α = 2.0. Detail of space interval [−30, 30].

Figure 3. (Left) Time evolution of total population, Π(t), for α = 0.2 and α = 2.0.
(Right) Time evolution of x[p=0.8](t), for α = 0.2 and α = 2.0.

Figure 4. Simulations as in Figure 1 at t = 100. Here α = 0.2 and σu = 0.5 (left)
and σu = 1 (right). All other parameters are as in (3.4)

δ makes a big difference. In Figure 6 we increase δ from 0.2 to 0.5. We show
the simulation for t = 100 and α = 0.2 on the left and α = 2 on the right. In
both cases the invasion is driven by the CSC compartment. The tumor growth
paradox still arises, as seen in Figure 7 (right), but the difference in the total
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Figure 5. Simulations as in Figure 1 at t = 100. Here α = 2 and σu = 0.5 (left) and
σu = 1 (right). All other parameters are as in (3.4)

Figure 6. Simulations as in Figure 1 at t = 100. Here δ = 0.5 and α = 0.2 (left) and
α = 2 (right). All other parameters are as in (3.4)

Figure 7. Time evolution of the total population Π(t) for δ = 0.3 (left) and δ = 0.5
(right). All other parameters are as in (3.4)

populations is negligible for δ = 0.5.

3.3 Simulating the effect of a radiation treatment

To illustrate the basic effect of stem cell resistance to radiation, we use a
rather ad-hoc approach. We consider one radiation dose (at time t∗ = 50
in this example), and we denote the reduction of the cell population by a
factor 1 − φ, φ ∈ [0, 1]. We are aware of detailed radiation treatment models
involving the linear quadratic model and tumor control probabilities, but a
detailed discussion of this framework does not add to the argument we want
to make here. For details on radiation treatment modelling we refer to [8] and
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[3]. Here, at the treatment time t∗, we choose new initial data as

u(x, t∗) = (1− θφ)u(x, t∗−)

v(x, t∗) = (1− φ)v∗(x, t∗−)

where t∗− = limt→t∗,t<t∗ . The term (1 − φ) denotes the surviving fraction of
CC while (1− θφ) denotes the larger surviving fraction of CSC. The value of
θ, 0 ≤ θ ≤ 1, describes radio resistance of stem cells.

Results reported in Fig. 8 correspond to φ = 0.95, θ = 0, for α = 0.2, as
selected times after treatment. Other model parameters have value as in (3.4).
The upper figure shows the effect of radiation at t = 50. The solid line shows
the tumor distribution p(x, t) just before treatment, and the dashed line just
after treatment. The reduction is lowest in the centre, where most CSC are
residing. The lower figure in Figure 8 shows the tumor evolution at time
t = 150, where the solid line (without treatment) basically coincides with
the dashed line (with treatment). Hence incomplete treatment seems to have
no effect on the tumor.

In Fig. 9 we show the total population on the left and the level set p = 0.8
on the right. Here we see that the progression with treatment (dashed line) is
slightly faster than without treatment (solid line). Again, a mild tumor growth
paradox is at play.
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Figure 8. Plot of p at selected time instants in case of radiation treatment at t = 50.
Case α = 0.2. Detail of space interval [−20, 20].
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Figure 9. (Left) Time evolution of total population, Π(t), for φ = 0.95 and α = 0.2,
(Right) Time evolution of x[p=0.8](t), for φ = 0.95 and α = 0.2.

4 Discussion

The increased resistance of cancer stem cells to various treatment modalities,
as compared to non stem CC, is one of the major obstacles of cancer treatment.
Cancer stem cells have been used to explain many observed phenomena of
cancer progression, including the tumor growth paradox. Our model extends
previous results of the tumor growth paradox. The individual based model
of Enderling [6], the ODE of Hillen [11] and our system (1.2), (1.3) make it
perfectly clear, that, as soon as CSC an CC compete for space and resources,
a tumor growth paradox exists.

We have studied an ad hoc radiation treatment with a single application of
radiation (one fraction) and we found that incomplete treatment leads to a
selection of CSC. We could include more realistic treatments, or chemotherapy
and other treatments, but the principle will be the same. Any stress applied
to the tumor will lead to a selection of CSC, and this is the point we wanted
to make here. The consideration of more realistic treatments is left to fur-
ther studies. It is clear, however, that a successful treatment needs to target
CSC. One such strategy was suggested by Youssefpour, Lowengrub et al. [18].
They suggest that conventional treatment, such as radiation treatment, should
be combined with a differentiation therapy. Differentiation therapy describes
a chemotherapy, where the chemotherapeutic agent pushes stem cells into
the differentiation cascade. Several candidate drugs are known and currently
tested. In [1] the above ODE stem cell model (1.1) was used to test Lowen-
grub’s hypothesis for specific cancers (secondary brain tumors, breast cancer,
and head and neck cancer). It was confirmed that for brain and head and
neck cancers a combination therapy can reduce the necessary radiation dose,
while the benefit for breast cancer treatment was limited (according to the
mathematical model).

As outlined before, our cancer stem cell model (1.2), (1.3) falls into the class
of birth-jump models as introduced in [12]. The existence theory developed
here is only a start. Many more interesting mathematical questions lie ahead
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for future research, including models for invasion, travelling waves and spatial
pattern formation.
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