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Abstract : This study provides a simple and economic procedure for the computation of thermal
fields, avoiding lengthy and difficult measurements of the theomophysical properties within the ‘phase change
zone’, where such coefficients have been approximated according to very simple rules. The method carries
out to be satisfactory on the basis of comparison of experimeutal and numerical determinations of the
thermal fields in a number of substances with particular specifications.

Introduction : Heat conduction in substances exhibiting sharp variations of thermal
coefficients —and in particular a large peak of the heat capacity over a relatively small temperature
interval—has been considered by the Authors in a previous paper (Bonacina 1974) ; change of
phase of impure substances was particularly focused.

The aim was to provide a simple and economic procedure for the computation of thermal
fields, avoiding lengthy and difficult measurements of the thermophysical properties within the
‘“phase change zone’”, where such coefficients have been approximated according to very simple
rales. The method carries out to be satisfactory on the basis of comparison of experimental and
numerical/ determinations of the thermal field in a number of substances behaving in the way
dez’.cribed’,:‘I above.

Tlpl;e approach of (Bonacina 1974) is theoretically grounded on the following result. Let
2, (%, v ta(x, 7), (%, 7)eQ=(0, R)X (0, 0), denote the temperatures due to the one-dimensional
heat flow in media having heat capacity and thermal conductivity ¢,(¢,), k,(£,), ¢o(23), kq(tg)
respectively, with the initial and boundary conditions : ¢;(x, 0)=A(x), £,(0, v)=f (), t; (R, 7)
eg(7), i=1,2.

Assume the functions ky, C;, are positive bounded and integrable (0<C,,<C;<C,,,
0<k,,<k; <ky,) and the functions f, g and & are bounded and piecewise continuous (accordingly,
t;(x, 7) will be bounded in terms of the data : t,,<¢;<t,,). Ift, and ¢, represent the lower and
upper bounds of the interval where thermal properties undergo the sharpest variations
(ta<<t,<t,<ly), we have :
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where ¢ is a known function of its arguments which tends to zero when AY, A1, AX, A all tend
. to zero and
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and A is the measure of the subset of () where #;<{¢,<f,. The most relevant features of estimate
(1) are pointed out in (Bonacina 1974). Here ¢, {, are meant to be weak solutions of the

respective equations Cy (t:) g’t—"= ‘ab»x [k;(t;) %c] ,i=1,2 with the same initial and boundary
data h, fand g, defined as bounded measurable functions such that, for any sufficiently smooth
test function F(x, z), F(0, 7)=F(R, ¢}=F(x, 0)=0, the following equality holds (omitting
subscripts) :

8 R R
f [;g’(K)gt£+Kg_j§} dx dy= — / H[R(X)]F(x, 0)dx
00 0
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“ ¢ | t :
HO={ coxy, ko= [ koddy
Y. b

and since%§ >k, >0 the inverse function #=t(K) exists and the definition %(K)=H(i(K))
makes sense.

This note is concerned with the proof of (1). A similar result has been demonstrated in
(Fasano 1973), where heat flux is specified on the boundary. Novertheless, the methods of
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(Fasano 1973] cannot be used in order to achieve the estimate (1), since quite different arguments
are nceded throughout the proof ! only the main differences will be dealt with.

Proof of the (1) : From (5) setting K; =K, (t;), we have

¢ R
S S [#:(Ks) - 1 (K)] ( %f + OF ) dx dv
0

ox*
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where
‘ { (K! - K;)I[”x“‘n)‘”i”ﬁ)]; Kx?éK!r
«(x, 1) = . )]
Lo K, =Kg
%, being a positive constant which can be defined as
<o =inf {(K; - K,)[[ I 1(Ks) = 5. (K, )]} (8)

Ky#Kg

It is worth noting here that the actual knowledge of the constant «,, essentially involving the
function C,(t,), is not neceded in the final computation of lell. As it will be seen, in fact, the
function «(x, ) enters the error estimates only through its upper bound :

«(X, T) K Kpg/Cag ‘ )

which is easily derived from the definitions.

* Following the procedures of (Fasano 1973) smooth approximations «.(x, v), n=1, 2... are
now introduced which converge to «(x, 7), In the sense of the L,(§2) norm, and are such that :

0<ot, sup (ﬂ()<kMICm (10)

'Then a sequence of “test functions’ F,(x, 7). n=1, 2, ... can be found by solving the parabolic

problems :

DFn . O°F,
e

o " "ox

=d,Cp, in

(11)



304 C. BONACINA, G. COMINI, A. FASANG M. PRIMICERIO
Fﬂ(op T)=Fﬂ(-R' r)=F,,(x, 9)=0 (12)

where e, (x, v), n=1,2 .. is a sequence of smooth functions converging towards the error
e(x, z), in the Lg(0) norm, and such that

max le, | ess sup lel 2y~ tm=At (13)

By substituting F, for F into (6) and letting 7 tend to infinity, it is possible to obtain an ecsiimate
of llell.

First, note that the left member of (6) can be rewritten, after replacing F with F,, in the form :

9 R
/ _/ L (Ks)— 2 1 (K,)] <qpendxdz
0

6 R
+/ f[”x(Ks) xx(K1)] (x— .(.)a Fy dxdr

and, owing to the uniform boundedness of ( Ladyzenskaja ef al. 1968, Thm. 9.1,

f
1‘ Ly()
P- 341 ) its limit for n—> o is :

6 R
I § KOs -1,) a5 ar.
0

In order to obtain estimates of the terms in the right member of equation (6), the following
inequalities are to be proved : i .

g_? x=0J<N1' ,aF" g | <N (14)
o R

S S (BF,.) dx di &N, ; ' 1%
0

R

§ (hax 001 ax < o, (16)

where Ny, Ng and N, are computable constants, independent of #. For the purpose of proving
(14), consider the standard parabolic problem [a(£, 7)>0] :
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OV o) =27 alt, nile, ). 0<E<R, 0<n<I; @)
VO, D=V(R, n)=V(¢, 0)=0. as)

Bach of problems (11), (12) can be put into the form (17), (18) by means of the following
transformations :

Emx; (19)

n=8-7; (20)

Fa(, 0-n)=V(n)s n

%n(¢, 6 - n)=a(¢, 7) ; (22)

en(é, 0-n)=—e({, 7). t (23)
Since ’ :

14 .

x 8t

14 vand §V

inequalities (14) will be proved if a bound for 8?! £=0 o t £=R is given [r; terms of quan-

tities not depending on 7. Recalling that, by virtue of (13) and (23) :

maxlel < AL (25)
’ l
the difference §
/ (&, )= At ER=H2- V() (26)
is such that: »
4 o? 27
6(0: '))=6(Rr "I)=oo 5(ft 0)>°' (28)
Therefore, the maximum principle leads to 650 and, consequently : |
ol 0 B <o (29)
O¢lgmo >0 of e-x<
and -
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In a similar way it can be shown that

d¥V, ~_ RAt DV

DE femo ~ 2 'of
thus concluding the proof of (14).

RAt
[ <=3 an

In order to prove (15) the already qubted result of (Ladyzenskaja et al. 1968)is not useful since it

gives sn estimate of %\L @ critically dependent on Cpy; therefore a different approach is
. v b2

2
needed. Multiplying both sides of equations (11) by gxl.:" integrating by parts the first term at the

left hand side, taking into account (12) and applying Schwartz inequality to the right hand side, it
follows that : .

R
TR Vaps |2
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0
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From (32) the inequality
< O2F.| (’_CM)"” <173 0 Fq
1B Egm T\CWE T Ox® i
k‘M).”’ 178, kg =
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is obtained immediately, then (15) follows easily from (11), (13) and (10).

Inequality (16) is now an Immediate consequence of (15) and of the identity .
6 ,
—_ (9F, ‘
)=~ \ 2 dx.
Falx0) Saf de v (34)
0 S -

Finally, applying essentially the same techniques of (Fasano 1973) (Section 5) the following
inequality is obtained : o '

+ ¥,

“<N,Ax\/i7

e(x,7)

Ko )|

(33)
where ¥ is a known function which depends on the same argumenfs of @ in (1) and possesses the

same properties. From (35) estimate (1) is then obtained immediately.

- Some nnmerical examples : Although only a mean square value for error ¢, ~2, is estimated
by (1), it has been pointed out in (Bonacina 1974) on experimental grounds that in many cases
even local differences between measured and calculated thermal fields do not exceed a few per cent.
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As a further support to this conjecture we have realized numerical simulations of usual
experimental conditions in the freezing of a sample of a biological substance, using three different
standard-type approximations for the heat capacity : the corresponding thermal fields during the
freezing process described below and the total *‘freezing times” Awzy, i, e. the times at which the
centre of the sample reaches the temperature of-—20°C, have been compared.

The sample considered is a cylinder of thickness 0.08m. Its lateral surface is insulated and
the temperature of opposite faces is decreasing from the initial value of the temperature throughout
the sample, +20°C, linearly at the rate of 1079K. s~2. The “latent heat” of ~ 128 kJ kg~1, is
comparable to that of “Tylose”, a water and methylcellulose (77 per cent and 23 per cent in
weight) mixture whose thermal properties are about the same as those of lean beef.

One rectangular and two triangular shapes for the heat capacity in the temperature interval
—2,0°C, as shown In Fig. 1. have been used in calculations.

Numerical procedures are described in (Bonacina 1974). The thermal fields are found to
be very close to each other (obviously except for temperatures in the freezing zone). Table 1
contains comparisons between the corresponding freezing times : the maximum relative difference
is about 2.5 per cent.

- TABLE 1. )
heat capacity standard-type approximation a b c
Ay (s) 5995 6165 6105
150 - thermal __ __ | - 3.0
conductivity
| W & heat [3TT—
by / i\ .._ capacitg Croverenns -
X100~ —-——~ | \{} -20 X
g Y £
- ! : ;
K> —
7y g _ 10 x
N
| -
\1
\

Fig. 1.
Standard-type approximations for thermophysical properties.
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