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Abstract. The initial temperature of a heat conductor is zero and its bound-
ary temperature is kept equal to one at each time. The conductor contains
a stationary isothermic surface, that is, an invariant spatial level surface of
the temperature. In a previous paper, we proved that, if the conductor is
bounded, then it must be a ball. Here, we prove that the boundary of the con-
ductor is either a hyperplane or the union of two parallel hyperplanes when it
is unbounded and satisfies certain global assumptions.

1. Introduction

Let u = u(x, t) be the unique (bounded) solution of the following problem for
the heat equation:

∂tu = ∆u in Ω × (0,+∞),(1.1)

u = 1 on ∂Ω × (0,+∞),(1.2)

u = 0 on Ω × {0},(1.3)

where Ω is a domain in R
N , N ≥ 2.

¿From a physical point of view, u(x, t) can be regarded as the normalized tem-
perature of a conductor Ω at the point x ∈ Ω and time t > 0. Keeping this in mind,
we will say that an (N − 1)-dimensional manifold Γ ⊂ Ω is an isothermic surface if
u is constant on Γ for some time t0 > 0; also, Γ is said to be a stationary isothermic
surface if Γ is an isothermic surface for every t > 0, that is

(1.4) u(x, t) = a(t), (x, t) ∈ Γ × (0,+∞),

for some function a : (0,+∞) → (0,+∞).
Stationary isothermic surfaces were considered in [2], [3], [11] and [9]. In [2], by

using Serrin’s symmetry result on overdetermined boundary value problems (see
[13]), Alessandrini proved that, if Ω is bounded and every point in ∂Ω is regular
for the Dirichlet problem for the Laplace equation, then the requirement that all
isothermic surfaces of u be stationary implies that Ω must be a ball. In [11], a
different proof of Alessandrini’s result was given with the aid of the classification
theorem for isoparametric hypersurfaces in Euclidean space due to Levi-Civita [8]
and Segre [12]. Such a proof extends to the case where the Dirichlet condition (1.2)
is replaced by the homogeneous Neumann condition.
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A substantial improvement to Alessandrini’s result was given in [9], in which
the authors proved that, if Ω is bounded, ∂Ω satisfies the exterior sphere condition
and u has at least one stationary isothermic surface Γ which is the boundary of a
domain D compactly contained in Ω satisfying the interior cone condition, then Ω
must be a ball (see Theorem 1.1 in [9]).

This result is based on the fact that, if Ω contains a stationary isothermic surface,
then there exists a positive constant c > 0 such that

(1.5)

N−1
∏

j=1

(1 −R κj) = c, on ∂Ω,

where R > 0 is the distance between the stationary isothermic surface and ∂Ω, and
where κj , j = 1, . . . , N − 1 are the principal curvatures of ∂Ω with respect to the
interior normal ν to ∂Ω (with this orientation of ν, if all κj ’s are non-negative, then
Ω is convex).

The proof of (1.5) essentially relies on the presence of a boundary layer when
t→ 0+ and on two observations: if Γ is a stationary isothermic surface for u, then
(i) Γ is an analytic surface parallel to ∂Ω; (ii) if r and t are fixed, the heat content
∫

B(x,r)
u(y, t) dy of any ball B(x, r) contained in Ω is constant for x ∈ Γ, where

B(x, r) denotes an open ball with radius r > 0 and centered at x ∈ R
N .

When ∂Ω is bounded, (1.5) implies that ∂Ω is a sphere, by a general version of
Aleksandrov’s Soap Bubble Theorem (see [1]).

In this paper we study unbounded domains which contain a stationary isothermic
surface.

We immediately observe that, by the same arguments employed in [9], we can
prove spherical symmetry for ∂Ω if Ω is an exterior domain, that is a domain whose
complement is bounded (Theorem 3.1).

The situation substantially changes when also ∂Ω is unbounded. Even if, by
adjusting the techniques used in [9], we can show that (1.5) holds for a large class
of domains (see Lemma 2.4), it is not clear whether (1.5) is sufficient to infer some
symmetry of Ω.

We incidentally observe that, in the context of unbounded domains, we see better
the difference between Alessandrini’s assumption and ours: the former carries a lot
more information than the latter. In fact, as we prove in Theorem 3.5, if we
assume that u admits N − 1 distinct isothermic surfaces Γ1, . . . ,ΓN−1, then (1.5)
holds for R that takes the values Rk = dist (Γk, ∂Ω), k = 1, . . . , N − 1 and c that
possibly takes N − 1 distinct positive values c1, . . . , cN−1. Thus, we can conclude
that each principal curvature of ∂Ω is constant, which implies that every connected
component of ∂Ω is an isoparametric surface, that is it is either a sphere or a
spherical cylinder or an hyperplane. It is evident that the same conclusions hold if
all isothermic surfaces are stationary.

The case in which only one isothermic surface of u is stationary needs more
attention. We observe that, in order to derive spherical symmetry from (1.5), we
needed that ∂Ω were bounded — a global assumption. When ∂Ω is unbounded, it is
our opinion that some global information on ∂Ω can be derived from the behavior
of u for large times. So far, we have not been able to exploit this idea efficiently.

However, in this paper, we prove some symmetry results for unbounded domains
by adding extra global assumptions on their boundaries. We consider three cases
that we summarize in Theorems 3.2, 3.3 and 3.4.
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In Theorem 3.2, we assume that ∂Ω is the graph of locally Lipschitz continu-
ous function ϕ : R

N−1 → R whose gradient does not grow too rapidly at infinity
(|∇ϕ(x′)| = o(|x′|1/2) as |x′| → +∞), and prove that, if u has a stationary isother-
mic surface, then ∂Ω must be a hyperplane. In our proof, we apply to equation
(1.5) a form of Bernstein’s theorem due to Caffarelli, Nirenberg and Spruck [5].

In Theorem 3.3, we use (1.5) to show that ∂Ω must be either a hyperplane or the
union of two parallel hyperplanes, when the stationary isothermic surface Γ is the
boundary of a domain D satisfying the interior cone condition, if either Ω is convex
or ∂Ω contains a relatively open subset whose principal curvatures are non-positive
(with respect to the interior normal).

In Theorem 3.4 we need not use (1.5). Instead, if ∂Ω is the graph of a Lipschitz
continuous function which behaves properly at infinity, we prove that ∂Ω must be a
hyperplane. In the proof, we directly exploit property (ii) above with the help of an
adaptation (due to Berestycki, Caffarelli and Nirenberg [4]) of the sliding method.

2. Preparatory lemmas

In order to prove the results contained in Section 3, we need to recall and, if
necessary, adapt to the present situation some of the auxiliary Lemmas obtained
in [9]. In fact, we need to extend the validity of (1.5) to domains with unbounded
boundary.

We begin with some definitions. We recall that a domain Ω ⊂ R
N satisfies

the exterior sphere condition if for every x ∈ ∂Ω there exists a ball B such that
B∩Ω = {x}; Ω satisfies the uniform exterior sphere condition, if there exists r0 > 0

such that for every x ∈ ∂Ω there exists a ball B(z, r0) such that B(z, r0)∩Ω = {x}.
Also, a domain D ⊂ R

N satisfies the interior cone condition if for every x ∈ ∂D
there exists a finite right spherical cone Kx with vertex x such that Kx ⊂ D and
Kx ∩ ∂D = {x}.

Also, we recall some facts from [7], § 14.6, on the distance function

(2.1) d(x) = dist (x, ∂Ω), x ∈ Ω.

For δ > 0 we set

(2.2) Ωδ = {x ∈ Ω : d(x) < δ}.
If ∂Ω is of class C2, then there exists a positive number δ such that d ∈ C2(Ωδ);
moreover, ∇d(x) = ν(x) for x ∈ ∂Ω, where ν(x) is the interior unit normal to ∂Ω
at x, and the eigenvalues of the matrix −∇2d(x) are 0 and the principal curvatures
κ1(x), . . . , κN−1(x) of ∂Ω at x. For j ∈ {1, . . . , N − 1} we will denote by Kj the
j-th symmetric invariant of ∂Ω defined by

(2.3) Kj(x) =
∑

i1<···<ij

κi1(x) · · ·κij
(x), x ∈ ∂Ω;

thus, KN−1(x) is the Gauss curvature and K1(x)/(N − 1) is the mean curvature of
∂Ω at x.

We will also need later the following formula:

(2.4) −∆d(x) =
N−1
∑

j=1

κj(y)

1 − κj(y)d(x)
for x ∈ Ωδ,

where y is the unique point in ∂Ω satisfying d(x) = |x− y|.
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We now proceed to demonstrate (1.5) in the relevant cases in which ∂Ω is un-
bounded.

As in [9], for s > 0, we define a function W = W (x, s) by

(2.5) W (x, s) = s

+∞
∫

0

u(x, t) e−s tdt;

W solves the following elliptic boundary value problem:

∆W − s W = 0 in Ω,(2.6)

W = 1 on ∂Ω.(2.7)

If Γ is a stationary isothermic surface for the solution u of (1.1)-(1.3), then from
(1.4) we have that

(2.8) W (x, s) = A(s), x ∈ Γ,

where A(s) = s
+∞
∫

0

a(t) e−s tdt.

Lemma 2.1 below is an easy consequence of the results in [14].

Lemma 2.1. Let Ω ⊂ R
N , N ≥ 2, be a domain satisfying the uniform exterior

sphere condition.
Then

(2.9) lim
s→+∞

− 1√
s

logW (x, s) = d(x), x ∈ Ω,

where d is given by (2.1) and the convergence is uniform in the closure of every
subset Ωδ, δ > 0, defined in (2.2).

Proof. Theorems 3.6 and 3.10, and Lemma 3.11 in [14], combined with the uniform
exterior sphere condition for Ω, give the desired conclusion. �

Lemma 2.1 is needed to extend the validity of Lemma 3.1 in [9] to the cases
considered in this paper. We consider two situations that are summarized in Lemma
2.2 below.

Lemma 2.2. Let Ω be a domain in R
N , N ≥ 2, satisfying the uniform exterior

sphere condition.
Assume that the solution u = u(x, t) to problem (1.1)-(1.3) satisfies condition

(1.4) and define a positive constant R by

(2.10) R = − lim
s→+∞

1√
s

log

(
∫ +∞

0

a(t) e−st dt

)

.

Then the assertions (i)-(vi) below hold if either (a) Γ is the boundary of a domain
D satisfying the interior cone condition and such that D ⊂ Ω, or (b) Ω takes the
form

(2.11) Ω = {x = (x′, xN ) ∈ R
N−1 × R : xN > ϕ(x′)},

where ϕ is a locally Lipschitz continuous function.

(i) For every x ∈ Γ, d(x) = R, where d is defined by (2.1);
(ii) Γ is analytic;
(iii) ∂Ω is analytic and ∂Ω = {x ∈ R

N : dist(x,Γ) = R};
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(iv) the mapping: Γ ∋ x 7→ y(x) ≡ x − Rν∗(x) ∈ ∂Ω is a diffeomorphism; here
ν∗(x) denotes the interior unit normal vector to Γ at x ∈ Γ :

(v) for every x ∈ Γ, ∇d(y(x)) = ν∗(x) and BR(x) ∩ ∂Ω = {y(x)};
(vi) let κj(y), j = 1, . . . , N − 1 denote the j-th principal curvature at y ∈ ∂Ω

of the analytic surface ∂Ω; then κj(y) <
1
R , j = 1, . . . , N − 1, for every

y ∈ ∂Ω.

Proof. If (a) holds, the proof is a straightforward extension of that of Lemma 3.1
in [9].

If (b) is in force, we just need to prove (ii), for the proof of the other assertions
runs exactly as in Lemma 3.1 in [9].

For every h > 0 and x = (x′, xN ), consider the function v(x, t) = u(x′, xN +
h, t)−u(x, t) and observe that v is a bounded solution of (1.1), v(x, 0) ≡ 0 for every
x ∈ Ω and v < 0 on ∂Ω × (0,+∞). The maximum principle implies that v < 0 on
Ω× (0,+∞). Hence, ∂u

∂xN
≤ 0 in Ω× (0,+∞) and applying the maximum principle

to ∂u
∂xN

yields that ∂u
∂xN

< 0 in Ω × (0,+∞).
Then, by the implicit function theorem, the analyticity of Γ follows from the

analyticity of u in the spatial coordinate. �

Lemma 2.2 can now be used to show that, for large values of s, the two functions

(2.12) W±
ε (x, s) = exp{−

√

s(1 ∓ ε) d(x)}, 0 < ε < 1,

provide respectively an upper and a lower barrier for W in the set Ω2R defined in
(2.2).

Lemma 2.3. Assume that Ω and Γ satisfy the hypotheses of Lemma 2.2.
Then, for every ε ∈ (0, 1), there exists a positive number sε such that

(2.13) W−
ε (x, s) ≤W (x, s) ≤W+

ε (x, s)

for every x ∈ Ω2R and every s ≥ sε, where W−
ε (x, s) and W+

ε (x, s) are defined in
(2.12).

Proof. It follows from (vi) of Lemma 2.2 and Lemma 14.16 of [7], p. 355 that the
function d = d(x) is of class C∞ on the set ΩR

2

. A straightforward computation

gives

∆W±
ε − s W±

ε = ∓ε
√
s {

√
s±

√

(1 ∓ ε)

ε
∆d} W±

ε in ΩR
2

.

Lemma 2.2 (vi) and the uniform exterior sphere condition with radius r0 > 0 for
Ω imply that

− 1

r0
≤ κj(y) <

1

R
for every y ∈ ∂Ω,

and hence we obtain that

− 1

r0
≤ κj(y)

1 − κj(y)d(x)
<

2

R
,

for every x ∈ ΩR
2

and every j = 1, . . . , N − 1. By (2.4), we conclude that

|∆d(x)| ≤ (N − 1)max{2/R, 1/r0} for every x ∈ ΩR
2

.
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Set M = (N − 1)max{ 2
R ,

1
r0

}; if s ≥ 1+ε
ε2 M2, then

(2.14)
∆W+

ε − s W+
ε < 0

∆W−
ε − s W−

ε > 0
in ΩR

2

.

Since the function − 1√
s
logW (x, s) converges uniformly on Ω2R to d(x) as s→ +∞,

there exists a number s∗ > 0 such that

−R
2

(1 −
√

1 − ε) ≤ − 1√
s

logW (x, s) − d(x) ≤ R

2
(
√

1 + ε− 1), x ∈ Ω2R,

for every s ≥ s∗. Hence, since d(x) ≥ R
2 for every x ∈ Ω2R \ ΩR

2

, we obtain

(2.15) W−
ε (x, s) ≤W (x, s) ≤W+

ε (x, s), x ∈ Ω2R \ ΩR
2

,

for every s ≥ s∗. Moreover,

(2.16) W−
ε (x, s) = W (x, s) = W+

ε (x, s) = 1, x ∈ ∂Ω,

for every s > 0, clearly.
Choose sε = max(s∗, 1+ε

ε2 M2). Then with the help of the Phragmèn-Lindelöf
principle (see [10], Corollary, p. 99), from (2.14), (2.15) and (2.16), we have

(2.17) W−
ε (x, s) ≤W (x, s) ≤W+

ε (x, s), x ∈ ΩR
2

,

for every s ≥ sε. Combining (2.17) with (2.15) yields (2.13). �

Lemma 2.4. Let Ω be a domain in R
N , N ≥ 2, satisfying the uniform exterior

sphere condition.
Assume that the solution u = u(x, t) to problem (1.1)-(1.3) satisfies condition

(1.4). Then formula (1.5) holds if either (a) Γ is the boundary of a domain D
satisfying the interior cone condition and such that D ⊂ Ω, or (b) Ω takes the form
(2.11).

Proof. The proof runs exactly as the one of Theorem 3.2 in [9], where Lemmas
2.4 and 3.1 in [9] should be replaced by Lemmas 2.3 and 2.2 in the present paper,
respectively. �

3. Symmetry results

The proof of the following theorem is a straightforward extension of Theorem
1.1 in [9].

Theorem 3.1. Let Ω be an exterior domain in R
N , N ≥ 2, satisfying the exte-

rior sphere condition and suppose that D is an exterior domain, with boundary Γ,
satisfying the interior cone condition, and such that D ⊂ Ω.

Assume that the solution u to problem (1.1)-(1.3) satisfies the condition (1.4)
for some function a : (0,+∞) → (0,+∞).

Then ∂Ω must be a sphere.

Proof. Since both ∂Ω and ∂D are compact, the barrier arguments by using Varad-
han’s result also works. Therefore, we get the same formula for the principal cur-
vatures of ∂Ω. Hence each connected component S of ∂Ω must be a sphere, and
the component of ∂D parallel to S, say T , is a concentric sphere with S. Consider
one such component S of ∂Ω. Denote by x0 ∈ R

N the center of S and denote by E
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the annulus with boundary ∂E = S ∪ T . Let A be an arbitrary orthogonal N ×N
matrix, and consider the function w = w(x, t) defined by

w(x, t) = u(x0 +A(x − x0), t) − u(x, t) for (x, t) ∈ E × (0,+∞).

We observe that w ≡ 0 in E×(0,+∞) by uniqueness, since w is a bounded solution
of the problem:

∂tw = ∆w in E × (0,+∞),

w = 0 on ∂E × (0,+∞),

w = 0 on E × {0}.
Therefore, for any pair of integers i, j ∈ {1, · · · , N} with i 6= j, the function

v = v(x, t) defined by

(3.1) v(x, t) = −(xj − x0
j )
∂u(x, t)

∂xi
+ (xi − x0

i )
∂u(x, t)

∂xj
for (x, t) ∈ Ω× (0,+∞).

is identically zero in E × (0,+∞), since A is arbitrary. Furthermore, since v is
analytic in x, we get that v ≡ 0 in Ω × (0,+∞). This implies that u(x, t) must be
radially symmetric with respect to the center x0, and hence we conclude that ∂Ω
must be a sphere. �

Theorem 3.2. Let Ω be the unbounded domain in R
N , N ≥ 2, defined by (2.11)

where ϕ is a locally Lipschitz continuous function on R
N−1 such that

(3.2) |∇ϕ(x′)| = o(|x′| 12 ) as |x′| → +∞,

and suppose that Ω satisfies the uniform exterior sphere condition.
Suppose that D is a domain with D ⊂ Ω whose boundary Γ has non-positive

mean curvature (with respect to the interior normal to Γ).
If the solution u to problem (1.1)-(1.3) satisfies the condition (1.4) for some

function a : (0,+∞) → (0,+∞), then ∂Ω is a hyperplane.

Proof. By using the uniform exterior sphere condition for Ω, we get for every j =
1, . . . , N − 1,

(3.3) κj(x) ≥ − 1

r0
for every x ∈ ∂Ω.

Combining (1.5) and (3.3) yields that there exists a positive constant τ > 0 such
that for every j = 1, . . . , N − 1,

(3.4) − 1

r0
≤ κj(x) ≤

1

R
− τ for every x ∈ ∂Ω.

Now, we shall use a result of Caffarelli, Nirenberg and Spruck (see [5], Theorem
2”). To avoid misunderstandings, we will uniform our notations to those of [5], by
setting ℓj = −κj , j = 1, . . . , N − 1, ℓ = (ℓ1, . . . , ℓN−1), and

f(ℓ) =

N−1
∑

j=1

log(1 +R ℓj).

Then

(3.5) f(ℓ(x)) ≡ f(ℓ1(x), . . . , ℓN−1(x)) = log c for every x ∈ ∂Ω.
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Notice that f is concave and symmetric in ℓj , j = 1, . . . , N − 1, and ∂f
∂ℓj

> 0.

Also, with the help of (3.4), we observe that

(3.6) |ℓ|2
N−1
∑

j=1

∂f

∂ℓj
(ℓ) ≤ τ−1(N − 1) (1/R+ 1/r0)

N−1
∑

j=1

∂f

∂ℓj
(ℓ) ℓ2j on ∂Ω.

Since Γ is parallel to ∂Ω at distance R, its principal curvatures are

− ℓj
1 +R ℓj

, j = 1, . . . , N − 1;

thus,
N−1
∑

j=1

ℓj
1 +R ℓj

≥ 0 on ∂Ω,

because Γ has non-positive mean curvature.
Therefore, we obtain that

(3.7)

N−1
∑

j=1

∂f

∂ℓj
(ℓ) ℓj ≥ 0 on ∂Ω,

and, also,

(3.8)

N−1
∑

j=1

ℓj ≥ 0 on ∂Ω,

since ℓj − ℓj

1+R ℓj
=

R ℓ2j
1+R ℓj

≥ 0, j = 1, . . . , N − 1.

The established properties (3.6), (3.7) and (3.8) allow us to use Theorem 2” in
[5] and conclude that there exists a positive constant A depending only on N such
that

ℓj(x) ≤
A

√

1 + |∇ϕ(x′)|2
1

ρ
sup

|y′−x′|<ρ

(1 + |∇ϕ(y′)|2),

for every x = (x′, ϕ(x′)) ∈ ∂Ω, ρ > 0, and j = 1, . . . , N − 1. This inequality and
(3.2) then imply that

(3.9) ℓj(x) ≤ 0 for every x = (x′, ϕ(x′)) ∈ ∂Ω and j = 1, . . . , N − 1.

Combining (3.9) with (3.8) yields the desired result. �

Theorem 3.3. Let Ω satisfy the uniform exterior sphere condition and suppose
that for every r > 0, ∂Ω contains a graph over an (N − 1)-dimensional ball with
radius r.

Let Γ be the boundary of a domain D satisfying the interior cone condition and
such that D ⊂ Ω.

Suppose that the solution u to problem (1.1)-(1.3) satisfies the condition (1.4)
for some function a : (0,+∞) → (0,+∞).

Assume that one of the following two conditions holds true:

(a) Ω is convex;
(b) there exists a relatively open non-empty subset A in ∂Ω such that all the

principal curvatures of ∂Ω are non-positive on A.

Then ∂Ω is either a hyperplane or the union of two parallel hyperplanes.
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Proof. By our assumptions, for every r > 0 there exist an (N − 1)-dimensional
ball Br and a function ψr : Br → R such that ∂Ω contains the graph {(x′, xN ) ∈
R

N−1 × R : xN = ψr(x
′), x′ ∈ Br}. Notice that

(3.10)
N−1
∑

j=1

κj = div

(

∇ψr
√

1 + |∇ψr|2

)

.

(a) Since all principal curvatures of ∂Ω are non-negative, we infer that

(3.11)

N−1
∏

j=1

(1 −R κj) ≥ 1 −R

N−1
∑

j=1

κj on ∂Ω.

Indeed, since each function κi 7→
N−1
∏

j=1

(1 −R κj) − 1 + R
N−1
∑

j=1

κj is affine, then it

will be non-negative on the interval [0, 1/R] if and only if it is so at the endpoints
0 and 1/R; (3.11) then easily follows by induction.

Since (1.5) holds, then c ≤ 1 and, by (3.11),

(3.12)

N−1
∑

j=1

κj ≥ cR on ∂Ω,

with cR = (1 − c)/R.
If c = 1, then by (1.5) all principal curvatures of ∂Ω are identically zero and

every connected component of ∂Ω is a hyperplane.
If c < 1, by (3.10), we obtain the inequalities

cR |Br| ≤
∫

Br

div

(

∇ψr
√

1 + |∇ψr|2

)

dx′ =

∫

∂Br

∇ψr · ν
√

1 + |∇ψr|2
dSx′ ,

and hence

(3.13) cR |Br| ≤ |∂Br|,
which contradicts the fact that r can be chosen arbitrarily large.

(b) In this case, since all principal curvatures of ∂Ω are non-positive in A, we
infer that c ≥ 1. By the arithmetic-geometric mean inequality, we have that

c
1

N−1 ≤ 1

N − 1

N−1
∑

j=1

(1 −R κj)

and hence

(3.14) −
N−1
∑

j=1

κj ≥ cR on ∂Ω,

with cR = (N − 1)(c
1

N−1 − 1)/R.
If c > 1, by the same arguments used in the proof of (a), we obtain (3.13) and

hence a contradiction.
If c = 1, then clearly κj ≡ 0 on A for j = 1, . . . , N − 1. By analyticity, each

κj must be zero on the connected component H of ∂Ω containing A, and hence H
must be a hyperplane.

Consequently, in both cases (a) and (b), there exists a hyperplane H which is a
connected component of ∂Ω. Since Γ is parallel to ∂Ω, there are two possibilities:
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either Γ coincides with the hyperplane H̃ ⊂ Ω at distance R from H, in which case
∂Ω would be a hyperplane, or Γ strictly contains H̃.

We shall show that, in the latter case, ∂Ω is the union of two parallel hyperplanes.
For simplicity, assume that H = {x ∈ R

N : xN = 0}. Let Ω′ be the strip between

H and H̃ ; we observe that u = u(x, t) satisfies (1.1) and (1.3) with Ω replaced by

Ω′, (1.2) with ∂Ω replaced by H and (1.4) replaced by H̃.
Let a ∈ R be an arbitrary number, and for every j ∈ {1, . . . , N − 1} consider the

function wj = wj(x, t) defined by

wj(x, t) = u(x+ a ej, t) − u(x, t) for (x, t) ∈ Ω′ × (0,+∞),

where {e1, · · · , eN} denotes the canonical basis of R
N . By uniqueness, wj ≡ 0 in

Ω′ × (0,+∞), since wj is a bounded solution of the problem:

∂twj = ∆wj in Ω′ × (0,+∞),

wj = 0 on ∂Ω′ × (0,+∞),

wj = 0 on Ω′ × {0}.
Thus, for every j ∈ {1, . . . , N − 1}, the function vj = vj(x, t) defined by

(3.15) vj(x, t) =
∂u(x, t)

∂xj
for (x, t) ∈ Ω × (0,+∞).

is identically zero in Ω′ × (0,+∞), since a is arbitrary. Furthermore, since vj is
analytic in x, we get that vj ≡ 0 in Ω × (0,+∞).

Therefore, u(x, t) depends only on t and xN and hence ∂Ω is the union of two
parallel hyperplanes. �

Theorem 3.4. Let Ω be the unbounded domain in R
N , N ≥ 2, defined by (2.11),

where ϕ is a globally Lipschitz continuous function on R
N−1 such that

(3.16) lim
|x′|→∞

[ϕ(x′ + ξ) − ϕ(x′)] = 0 for each ξ ∈ R
N−1.

Let u = u(x, t) be the solution of (1.1)-(1.3) and assume that Γ is an (N − 1)-
dimensional surface, contained in Ω, such that (1.4) holds for some function a :
(0,+∞) → (0,+∞).

Then ∂Ω must be a hyperplane.

Proof. Consider the function W = W (x, s) defined in (2.5); by Theorem 3.12 in
[14], the number R in (2.10) is well defined. As observed in the proof of Theorem
3.2 in [9], since Γ is a stationary isothermic surface for u, for every r ∈ (0, R) and
every s > 0, we have that

(3.17)

∫

B(x,r)

W (y, s) dy = c(r, s), for every x ∈ Γ,

for some function c = c(r, s).
Now, we follow the argument in [4], pp. 1108–1110. We fix a vector ξ ∈ R

N−1,
ξ 6= 0, and for h ≥ 0 define the set

Ωξ,h = {x = (x′, xN ) ∈ R
N−1 × R : (x′ + ξ, xN + h) ∈ Ω}.

Since ϕ is globally Lipschitz continuous, the set Ωξ,h must contain Ω if h is large
enough. Furthermore, (3.16) yields that Ωξ,h does not equal Ω if h > 0. For such
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an h, we define the function

Wξ,h(x, s) = W (x′ + ξ, xN + h, s) for x = (x′, xN ) ∈ Ω.

The function Zξ,h = Wξ,h −W is negative in Ω, by the maximum principle. In
fact, Ωξ,h does not equal Ω, and Zξ,h satisfies (2.6) in Ω and is non-positive on ∂Ω.

As in [4], we set
h∗ = inf{h ≥ 0 : Ω ⊂ Ωξ,h}.

Suppose that h∗ > 0; in view of (3.16), there exists a point p at a finite distance
such that

p ∈ ∂Ω ∩ ∂Ωξ,h∗ .

Set
Γξ,h∗ = {x = (x′, xN ) : (x′ + ξ, xN + h∗) ∈ Γ}

and let p∗ = p+R∇d(p) : p∗ belongs to Γ ∩ Γξ,h∗ .
Choose an r ∈ (0, R); we have that

∫

B(p∗,r)

Zξ,h∗ dx < 0,

since Zξ,h∗ < 0 in Ω. On the other hand, (3.17) implies that
∫

B(p∗,r)

Zξ,h∗ dx =

∫

B(p∗,r)

Wξ,h∗ dx−
∫

B(p∗,r)

W dx =(3.18)

=

∫

B(p∗+(ξ,h∗),r)

W dx−
∫

B(p∗,r)

W dx =(3.19)

= 0,(3.20)

since p∗ + (ξ, h∗) ∈ Γ because p∗ ∈ Γξ,h∗ .
Therefore, we obtained a contradiction; it follows that h∗ = 0, that is Ω ⊂ Ωξ,h

for all h ≥ 0, which implies that Ω + (ξ, 0) = Ω for all vectors ξ ∈ R
N−1 (see [4]).

This last condition tells us that the function ϕ is periodic of period ξ; since this
is true for all ξ ∈ R

N−1, then ϕ must be constant. i.e. ∂Ω is a hyperplane. �

Finally, Theorem 3.5 extends Alessandrini’s result to a quite general class of
unbounded domains.

Theorem 3.5. Let Ω be a domain in R
N , N ≥ 2, satisfying the uniform exterior

sphere condition and suppose that D1, . . . , DN−1 are N − 1 distinct domains, with
boundaries Γ1, . . . ,ΓN−1 satisfying the interior cone condition, and such that Dk ⊂
Ω, k = 1, . . . , N − 1.

Assume that the solution u to problem (1.1)-(1.3) satisfies the conditions

(3.21) u(x, t) = ak(t), (x, t) ∈ Γk × (0,+∞), k = 1, . . . , N − 1,

for some N − 1 functions ak : (0,+∞) → (0,+∞), k = 1, . . . , N − 1.
Then ∂Ω is either a sphere, a spherical cylinder, a hyperplane, or the union of

two parallel hyperplanes.

Proof. Applying Lemma 2.4 to each stationary surface Γk, we obtain that

(3.22)

N−1
∏

j=1

[1 −Rk κj(x)] = ck, x ∈ ∂Ω, k = 1, . . . , N − 1,
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where Rk = dist (Γk, ∂Ω), k = 1, . . . , N − 1, and ck, k = 1, . . . , N − 1, are positive
constants; (3.22) is a linear, non-singular system where the unknown are the N − 1
symmetric invariants of ∂Ω. Since all the coefficients of such a system are constant
on ∂Ω, we obtain that all the symmetric invariants of ∂Ω are constant, and hence all
the principal curvatures of ∂Ω are constant. By the classical results on isoparametric
surfaces in R

N (see [8], [12]), we then infer that each connected component of ∂Ω
must be either a sphere, a spherical cylinder or a hyperplane.

If one connected component of ∂Ω is a sphere or a hyperplane, we proceed as
in Theorem 3.1 or 3.3, respectively, and conclude that ∂Ω must be a sphere, a
hyperplane or the union of two hyperplanes. If one component of ∂Ω is a spherical
cylinder, say Sm = {x ∈ R

N : x2
1 + · · · + x2

m = r2} with 2 ≤ m ≤ N − 1, then
a component Tm of the ∂Dk’s will be a spherical cylinder parallel to Sm. Hence,
in the cylindrical annulus Em with boundary ∂Em = Sm ∪ Tm, we consider the
auxiliary function (3.1) with x0 = 0, 1 ≤ i, j ≤ m and i 6= j and the function (3.15)
with m+ 1 ≤ j ≤ N , by an argument similar to that of Theorem 3.1 we conclude
that ∂Ω must be a spherical cylinder. �
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