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Abstract

We consider a convex polygonal heat conductor whose inscribed circle touches

every side of the conductor. Initially, the conductor has constant temperature and, at

every time, the temperature of its boundary is kept at zero. The hot spot is the point

at which temperature attains its maximum at each given time. It is proved that, if the

hot spot is stationary, then the conductor must satisfy two geometric conditions. In

particular, we prove that these geometric conditions yield some symmetries provided

the conductor is either pentagonal or hexagonal.
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1 Introduction

A hot spot in a heat conductor is a point at which temperature attains its maximum at
each given time. Let Ω be a bounded convex domain in the Euclidean space R

N , N ≥ 2,
and consider a heat conductor Ω having initial constant temperature and zero boundary
temperature at every time. The physical situation can be modeled as the following initial-
boundary value problem for the heat equation:

ut = ∆u in Ω × (0,∞), (1.1)

u = 0 on ∂Ω × (0,∞), (1.2)

u = 1 on Ω × {0}, (1.3)

where u = u(x, t) denotes the normalized temperature at a point x ∈ Ω and at a time
t > 0.

Since Ω is convex, a result of [BL] shows that log u(x, t) is concave in x, which, together
with the analyticity of u in the spatial variable x, implies that for each time t > 0 there
exists a unique point x(t) ∈ Ω satisfying

{x ∈ Ω : ∇u(x, t) = 0} = {x(t)}, (1.4)

where ∇ denotes the spatial gradient. The point x(t) is the unique hot spot for each time
t > 0. Put M = {x ∈ Ω : d(x) = max

z∈Ω
d(z)}, where d(z) is the distance of z to ∂Ω defined

by
d(z) = dist(z, ∂Ω) (= inf{|z − y| : y ∈ ∂Ω}) for z ∈ Ω. (1.5)
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Then we have
dist(x(t),M) → 0 as t → 0+, (1.6)

since the function −4t log[1 − u(x, t)] attains its maximum at x = x(t) for each t > 0 and
a result of Varadhan [V] shows that

−4t log[1 − u(x, t)] → d(x)2 as t → 0+ uniformly on Ω. (1.7)

In conclusion, the hot spot x(t) starts from M. Also, as t → ∞, x(t) tends to the point
at which the positive first eigenfunction of −∆ with the homogeneous Dirichlet boundary
condition attains its maximum (see [MS 3], Introduction, for details).

From now on, without loss of generality, we shall assume that Ω contains the origin 0.
A conjecture of Klamkin [Kl] stated that, if the origin is a stationary hot spot, that

is, if x(t) ≡ 0, then Ω must be centro-symmetric with respect to 0. This was denied
by Gulliver-Willms [GW] and Kawohl [Ka]. A typical counterexample is an equilateral
triangle in the plane. After that Chamberland-Siegel [CS] posed the following conjecture.

Conjecture 1.1 (Chamberland–Siegel) If 0 is a stationary hot spot in a bounded convex
domain Ω, then Ω is invariant under the action of an essential subgroup G of orthogonal
transformations.

A subgroup G of orthogonal transformations is said to be essential if, for every x 6= 0,
there exists an element g ∈ G such that gx 6= x. As observed in [CS], it is quite
easy to prove that, if Ω is invariant under the action of an essential subgroup G of
orthogonal transformations, then the origin must be a stationary hot spot. Indeed, if
Ω enjoys that invariance, then by the unique solvability of the initial-Dirichlet problem
(1.1)-(1.3) the solution u itself is invariant under the action of G. Namely, we have
u(x, t) ≡ u(gx, t) (x ∈ Ω, t > 0, g ∈ G). Taking the gradient of both sides of the last
identity, together with the assumption that G is essential, implies that ∇u(0, t) = 0 (t > 0),
and then it follows from (1.4) that the origin is a stationary hot spot.

A proof of Conjecture 1.1 appears to be a much harder task. So far, the only known
result in this direction is the following theorem, that was proved by the authors in [MS 3]
as a consequence of a more general one.

Theorem 1.2 Let Ω be a bounded domain in R
2. Then the following hold true.

(1) If Ω is a triangle and 0 is a stationary hot spot, then Ω must be an equilateral triangle
centered at 0.

(2) If Ω is a convex quadrangle and 0 is a stationary hot spot, then Ω must be a paral-
lelogram centered at 0.

(3) If Ω is a non-convex quadrangle, then there is no stationary critical point of u in Ω.
In particular, there is no stationary hot spot.

In (1) of Theorem 1.2, G is the cyclic group generated by the rotation of the angle 2π
3 , and

in (2) G = {I,−I} where I is the identity mapping. The proof is based on two ingredients;
one is the balance law around stationary critical points of the heat flow (see [MS 1]) and
the other makes use of the asymptotic behavior as t → 0+ of solutions of the heat equation
due to Varadhan [V].

In the present paper, we are able to treat the case of certain pentagons and hexagons,
as the following result specifies.

Theorem 1.3 Let Ω be a convex polygon in R
2 and suppose that its inscribed circle

touches every side of Ω. Then the following propositions hold true.
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(1) If Ω is a pentagon and 0 is a stationary hot spot, then Ω must be a regular pentagon
centered at 0.

(2) If Ω is a hexagon and 0 is a stationary hot spot, then Ω is invariant under the action
of the rotation of one of angles π

3 , 2π
3 , π.

This theorem is a consequence of the following general statement.

Theorem 1.4 Let Ω be a convex polygon in R
2 with m sides, m ≥ 5, and let BR(0) be

an open disk with radius R > 0 and centered at 0.
Suppose that 0 is a stationary hot spot and the circle ∂BR(0) touches every side of Ω at

the points p1, · · · , pm ∈ ∂Ω∩ ∂BR(0). Let q1, · · · , qk be the k (1 ≤ k ≤ m) nearest vertices
of Ω to 0.

Then we have that
m

∑

i=1

pi = 0 (1.8)

and
k

∑

j=1

qj = 0. (1.9)

We observe that, in the special case in which the vertices q1, . . . , qk are consecutive, equa-
tion (1.9) easily implies that k = m and Ω must be a regular polygon.

Notice that (1.8) was already obtained in [MS 3]. However, (1.9) is new and is derived
by coupling a suitable extension argument to a careful analysis of the short-time behavior
of u(x, t) near the vertices of Ω.

The present paper is organized as follows. Both Section 2 and Section 3 are devoted
to the proof of Theorem 1.4. In Section 2, we introduce the function v = 1 − u and give
sub- and supersolutions v−, v+ for the initial-boundary value problem solved by v. Then,
by folding back v with respect to each side of Ω, we extend v to a solution of the heat
equation in a domain larger than Ω and by using the balance law around a stationary
critical point, we obtain (1.8) and the main identity (2.13). In Section 3, with the aid
of v−, v+, we exploit a more detailed initial behavior of v and eventually obtain (1.9).
Finally, in Section 4, by using Theorem 1.4, we prove Theorem 1.3.

2 Barriers for an extension of the solution

In this section, we shall extend the solution of (1.1)-(1.3) to a larger domain, in order to
prove (1.8) and prepare the proof of (1.9).

Let Ω be a convex m-gon in R
2 with m ≥ 5. Suppose that the circle ∂BR(0) touches

every side of Ω, say ∂Ω ∩ ∂BR(0) = {p1, · · · , pm}. Let q1, · · · , qk be the k (1 ≤ k ≤ m)
nearest vertices of Ω to the origin; we can set R∗ = |q1| = |q2| = · · · = |qk|, and hence
R∗ > R.

Denote by ν1, · · · .νm the interior normal unit vectors to ∂Ω at the points p1, · · · , pm,
respectively. Note that

pi = −Rνi (i = 1, · · · , m). (2.1)

For notational convenience, we deal with the function v = 1 − u instead of u and
consider the cold spot of v instead of the hot spot of u; then v satisfies:

vt = ∆v in Ω × (0,∞), (2.2)

v = 1 on ∂Ω × (0,∞), (2.3)

v = 0 on Ω × {0}. (2.4)
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We now introduce a subsolution v− = v−(x, t) and a supersolution v+ = v+(x, t) for
problem (2.2)-(2.4).

Let f = f(ξ) be the function defined by

f(ξ) =
1√
π

∫ ∞

ξ

e−
1
4
η2

dη for all ξ ∈ R; (2.5)

note that
∫ ∞

0

ξf(ξ) dξ = 1. (2.6)

The function w = w(s, t) given by

w(s, t) = f
(

t−
1
2 s

)

for (s, t) ∈ R × (0,∞) (2.7)

satisfies the one-dimensional heat equation wt = wss in R × (0,∞). Hence, we easily see
that the functions defined by

v−(x, t) = max
1≤i≤m

f
(

t−
1
2 (x − pi) · νi

)

, (2.8)

v+(x, t) =

m
∑

i=1

f
(

t−
1
2 (x − pi) · νi

)

. (2.9)

are respectively a sub- and a supersolution for problem (2.2)-(2.4). By the comparison
principle it follows that

v− ≤ v ≤ v+ in Ω × (0,∞). (2.10)

The following lemma will be useful in Section 3.

Lemma 2.1 For any compact set K contained in Ω, there exist two positive constants
A > 0, B > 0 satisfying

0 < v(x, t) ≤ Ae−
B
t for all (x, t) ∈ K × (0,∞).

Proof. This lemma follows directly from (2.10) and from the convexity of Ω.

Note that Lemma 2.1 holds true also for general domain (not necessarily convex)
Ω ⊂ R

N (N ≥ 2) because of Varadhan’s result (1.7).
By following the procedure employed in [MS 3], we extend v to a solution v∗ = v∗(x, t)

of the heat equation in a larger domain domain Ω∗×(0,∞) ⊃ Ω×(0,∞). Ω∗ is obtained by
putting together Ω and all its reflections with respect to each of its sides and by eliminating
possible overlaps; v∗ equals 1−u∗, where u∗ is obtained by odd reflections of u with respect
to each side of Ω. It is clear that BR∗(0) ⊂ Ω∗ (see Fig. 1 (a)).

Since 0 is a stationary cold spot of v, we infer that it is a stationary critical point of
v∗.

Therefore we can use the balance law obtained in [MS 1], Theorem 2 (see also [MS 2],
Corollary 2.2, for another proof) to infer that

∫

BR∗ (0)

xv∗(x, t) dx = 0 for any t > 0. (2.11)

Letting t → 0+ yields that

2

∫

BR∗ (0)\Ω

x dx = 0, (2.12)
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Figure 1: (a) The construction of the set Ω∗ and (b) the sets E, Di and D =
⋃

Di.

since v∗ tends to 0 inside Ω and to 2 outside; (2.12) easily implies (1.8).
Denote by D the region obtained as the union of the reflections of each connected

component of BR∗(0) \ Ω with respect to each relevant side of Ω, let Dj, 1 ≤ j ≤ m, be
the connected components of D, and put E = (BR∗(0)∩Ω) \D. Note that both D and E
are contained in Ω. For x ∈ Dj , 1 ≤ j ≤ m, denote by x∗ the reflection of x with respect
to the side of Ω containing Dj ∩ ∂Ω. Then v∗(x, t) ≡ 2 − v∗(x∗, t) because of (2.3) (see
Fig. 1 (b)). Since

∫

BR∗ (0)

xv∗(x, t) dx =

∫

E

xv(x, t) dx +

∫

D

xv(x, t) dx +

∫

BR∗(0)\(D∪E)

xv(x, t) dx =

∫

E

xv(x, t) dx +

∫

D

xv(x, t) dx +

∫

D

x∗[2 − v(x, t)] dx,

from (2.11) and (2.12) it follows that for any t > 0
∫

E

xv(x, t) dx +

∫

D

(x − x∗) v(x, t) dx = 0. (2.13)

In order to prove (1.9), with the help of (2.10), in the next section we shall compute
the limit

lim
t→0+

1

t

{
∫

E

xv(x, t) dx +

∫

D

(x − x∗) v(x, t) dx

}

. (2.14)

3 Proof of Theorem 1.4: asymptotic lemmas

When k < m, let s1, · · · , sℓ (ℓ = 2m − 2k) be all the points such that

∂Ω ∩ ∂BR∗(0) = {q1, · · · , qk, s1, · · · , sℓ}. (3.1)

Since each pi is the midpoint of a pair of points in ∂Ω ∩ ∂BR∗(0), from (1.8) we have:

2

k
∑

j=1

qj +

ℓ
∑

j=1

sj = 2

m
∑

i=1

pi = 0. (3.2)
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Notice that, when k = m, the definition of the points q1, · · · , qm implies that all the angles
of m−gon Ω must be equal to each other, and hence Ω must be a regular polygon. Thus
(1.9) holds true when k = m. Hereafter we assume that k < m.

Since the circle ∂BR(0) touches every side of Ω, all the angles between the circle
∂BR∗(0) and the sides of Ω at qj or at sj are equal. Denote by α ∈ (0, π

2 ) these angles.
In view of Lemma 2.1, it is enough to replace the sets in the integrals in (2.14) with

small neighborhoods of the points qj , sj, and small neighborhoods of ∂Ω in Dj . Choose a
number δ0 > 0 so small that, for any x ∈ {q1, · · · , qk, s1, · · · , sℓ},

Bδ0
(x) ∩ ({p1, · · · , pm, s1, · · · , sℓ} ∪ { vertices of Ω}) = {x}.

Lemma 3.1 For ε > 0 and 1 ≤ j ≤ ℓ set

Eε(sj) = {x ∈ E : 0 < (x − sj) · νi < ε} ∩ Bδ0
(sj),

where νi is the interior unit normal vector to the side of Ω containing the point sj (see
Fig. 2).

Then, if ε is sufficiently small, we have:

lim
t→0+

1

t

∫

Eε(sj)

x v(x, t) dx = 2 cotα sj for 1 ≤ j ≤ ℓ. (3.3)

Proof. Since Ω is convex and sj is not a vertex of Ω, (2.8), (2.9), and (2.10) imply that
there exist two positive constants Aj and Bj such that

∣

∣

∣
v(x, t) − f

(

t−
1
2 (x − sj) · νi

)∣

∣

∣
≤ Aje

−
Bj
t for all x ∈ Ω ∩ Bδ0

(sj), t > 0. (3.4)

Here we have used the fact that (x − sj) · νi = (x − pi) · νi.
Set ei = (pi − sj)/|pi − sj |; if ε > 0 is sufficiently small, we can write

Eε(sj) = {x = sj + z1 νi + z2 ei : 0 < z1 < ε, ϕ−(z1) < z2 < ϕ+(z1)},

where ϕ−(z1) < 0 < ϕ+(z1) for z1 ∈ (0, ε) and the functions ϕ− and ϕ+ represent
respectively ∂Eε(sj)∩∂BR∗(0) and ∂Eε(sj)∩∂D. Note that ϕ′

−(0) = − cotα and ϕ′
+(0) =

cotα.
In view of (3.4), we calculate

1

t

∫

Eε(sj)

f
(

t−
1
2 (x − sj) · νi

)

dx =

1

t

∫ ε

0

[

f
(

t−
1
2 z1

)

∫ ϕ+(z1)

ϕ−(z1)

dz2

]

dz1 =

∫ t
−

1
2 ε

0

ϕ+(t
1
2 ξ) − ϕ−(t

1
2 ξ)

t
1
2 ξ

ξf(ξ)dξ.

Since

lim
t→0+

ϕ+(t
1
2 ξ) − ϕ−(t

1
2 ξ)

t
1
2 ξ

= ϕ′
+(0) − ϕ′

+(0) = 2 cotα for ξ > 0,

by Lebesgue’s dominated convergence theorem we get

lim
t→0+

1

t

∫

Eε(sj)

f
(

t−
1
2 (x − sj) · νi

)

dx = 2 cotα

∫ ∞

0

ξf(ξ) dξ. (3.5)

In a similar way, we obtain

lim
t→0+

1

t

∫

Eε(sj)

(x − sj) f
(

t−
1
2 (x − sj) · νi

)

dx = 0, (3.6)
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since

lim
t→0+

1

t

∫ ε

0

[

f
(

t−
1
2 z1

)

∫ ϕ+(z1)

ϕ−(z1)

zi dz2

]

dz1 = 0 for i = 1, 2.

With the aid of (3.4), (3.5), (3.6), and (2.6) we then get (3.3).

Lemma 3.2 For ε > 0 and 1 ≤ j ≤ k set

Eε(qj) = {x ∈ E : 0 < (x − qj) · νi < ε or 0 < (x − qj) · νi+1 < ε} ∩ Bδ0
(qj),

where νi and νi+1 are the interior unit normal vectors to the two sides of Ω containing
the vertex qj (see Fig. 2).

Then, if ε is sufficiently small, we have that

4 cot 2α ≤ lim sup
t→0+

1

t

∫

Eε(qj)

v(x, t) dx ≤ 8 cot 2α, (3.7)

and

lim
t→0+

1

t

∫

Eε(qj)

(x − qj) v(x, t) dx = 0, (3.8)

for 1 ≤ j ≤ k.

Proof. Let β be the angle of Ω at the vertex qj ; observe that β + 2 α = π. Since β is the
largest angle in Ω, we have that π(1 − 2/m) < β < π, α < π/m and hence

β − 2 α > 0,

for every m ≥ 4.
Let γ be the bisectrix of the angle of Ω at qj ; γ divides Eε(qj) into two parts, Eε

i (qj)
and Eε

i+1(qj), corresponding to νi and νi+1, respectively.
Since qj is a vertex of Ω, (2.8), (2.9), and (2.10) imply that there exist two positive

constants Aj and Bj such that

0 < f
(

t−
1
2 (x − qj) · νi

)

≤ v(x, t) ≤ 2 f
(

t−
1
2 (x − qj) · νi

)

+ Aje
−

Bj

t

for all x ∈ Eε
i (qj), t > 0. (3.9)

Here we have used the fact that (x − qj) · νi = (x − pi) · νi.
Set ei = (pi − qj)/|pi − qj |; if ε is sufficiently small, we can write

Eε
i (qj) = {x = qj + z1 νi + z2 ei : 0 < z1 < ε, z1 tan α < z2 < ϕ(z1)}.

Note that ϕ′(0) = cotα and ϕ′(z1) > 0 for z1 > 0.
We now write:

1

t

∫

Eε
i (qj)

f
(

t−
1
2 (x − qj) · νi

)

dx =
1

t

∫ ε

0

[

f
(

t−
1
2 z1

)

∫ ϕ(z1)

z1 tan α

dz2

]

dz1 =

1

t

∫ ε

0

f
(

t−
1
2 z1

)

[ϕ(z1)−z1 tan α] dz1 =

∫ t
−

1
2 ε

0

ξf(ξ)
ϕ(t

1
2 ξ) − t

1
2 ξ tanα

t
1
2 ξ

dξ.

Thus, since

lim
t→0+

ϕ(t
1
2 ξ)

t
1
2 ξ

= ϕ′(0) = cotα for ξ > 0,
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by Lebesgue’s dominated convergence theorem we get

lim
t→0+

1

t

∫

Eε
i (qj)

f
(

t−
1
2 (x − qj) · νi

)

dx = 2 cot 2α

∫ ∞

0

ξf(ξ) dξ. (3.10)

By a similar calculation, we have

lim
t→0+

1

t

∫

Eε
i (qj)

|x − qj | f
(

t−
1
2 (x − qj) · νi

)

dx = 0, (3.11)

since

lim
t→0+

1

t

∫ ε

0

[

f
(

t−
1
2 z1

)

∫ ϕ(z1)

z1 tan α

zi dz2

]

dz1 = 0 for i = 1, 2.

From (3.9), (3.10), and (2.6) it follows that

2 cot 2α ≤ lim sup
t→0+

1

t

∫

Eε
i (qj)

v(x, t) dx ≤ 4 cot 2α. (3.12)

Also, since

∣

∣

∣

∣

∣

1

t

∫

Eε
i (qj)

(x − qj) v(x, t) dx

∣

∣

∣

∣

∣

≤ 1

t

∫

Eε
i (qj)

|x − qj | v(x, t) dx,

we have from (3.9) and (3.11)

lim
t→0+

1

t

∫

Eε
i (qj)

(x − qj) v(x, t) dx = 0.

By the same arguments we obtain the last two formulas with Eε
i (qj) replaced by

Eε
i+1(qj), and hence (3.7) and (3.8) follow at once.

Lemma 3.3 For any j, s ∈ {1, · · · , k}

lim
t→0+

1

t

[

∫

Eε(qj)

v(x, t) dx −
∫

Eε(qs)

v(x, t) dx

]

= 0. (3.13)

Proof. Since the angles of Ω at two distinct vertices qj and qs are equal to one another, by
a translation and an orthogonal transformation we can superpose one angle on the other
one. Thus, there exists an orthogonal matrix T such that the function w = w(x, t) defined
by

w(x, t) = v(x, t) − v(qs + T (x − qj), t)

satisfies

wt = ∆w in
(

Ω ∩ Bδ0
(qj)

)

× (0,∞), (3.14)

w = 0 on
(

∂Ω ∩ Bδ0
(qj)

)

× (0,∞), (3.15)

w = 0 on
(

Ω ∩ Bδ0
(qj)

)

× {0}. (3.16)

Since Ω ∩ ∂Bδ0
(qj) does not contain any vertices of Ω, it follows from (2.8), (2.9), and

(2.10) that there exist two positive constants G > 0, H > 0 satisfying

|w(x, t)| ≤ Ge−
H
t for all (x, t) ∈

(

Ω ∩ ∂Bδ0
(qj)

)

× (0,∞). (3.17)
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Figure 2: The sets Eε(sj), Eε(qj), and Dε(pi).

Observe that

(∂t − ∆)
(

Ge−
H
t

)

= GHt−2e−
H
t > 0 for (x, t) ∈ R

2 × (0,∞). (3.18)

Therefore, in view of (3.14)-(3.18), by the comparison principle we obtain

|w(x, t)| ≤ Ge−
H
t for all (x, t) ∈ (Ω ∩ Bδ0

(qj)) × (0,∞). (3.19)

Since for t > 0

1

t

∣

∣

∣

∣

∣

∫

Eε(qj)

v(y, t) dy −
∫

Eε(qs)

v(y, t) dy

∣

∣

∣

∣

∣

=
1

t

∣

∣

∣

∣

∣

∫

Eε(qj)

v(y, t) dy −
∫

Eε(qj)

v(qs + T (x − qj), t) dx

∣

∣

∣

∣

∣

≤ 1

t

∫

Ω∩Bδ0
(qj)

|w(x, t)| dx,

(3.19) implies (3.13).

Lemma 3.4 If ε > 0 is sufficiently small, then there exist a positive sequence {tn}n∈N with
tn → 0 as n → ∞ and a number λ ∈ [4 cot 2α, 8 cot 2α] such that for any j ∈ {1, · · · , k}

lim
n→∞

1

tn

∫

Eε(qj)

v(x, tn) dx = λ. (3.20)

Proof. It is clear that (3.7) guarantees that there exist a positive sequence {tn}n∈N with
tn → 0 as n → ∞ and a number λ ∈ [4 cot 2α, 8 cot 2α] such that (3.20) holds for j = 1.
Therefore it follows from Lemma 3.3 that (3.20) holds for any j ∈ {1, · · · , k}.

Lemma 3.5 Let
ρ =

√

(R∗)2 − R2 > 0 (3.21)

and, for ε > 0 and 1 ≤ i ≤ m set

Dε(pi) = { x ∈ Di : 0 < (x − pi) · νi < ε },

where νi is the interior unit normal vector to the side of Ω containing pi (see Fig. 2).
Then, if ε is sufficiently small, we have that for 1 ≤ i ≤ m

lim
t→0+

1

t

∫

Dε(pi)

(x − x∗) v(x, t) dx = 4ρνi = −4ρ

R
pi. (3.22)
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Proof. We shall consider three cases: (a) the set ∂Di ∩ {q1, . . . , qk} is empty; (b) the set
∂Di ∩ {q1, . . . , qk} has exactly one point; (c) the set ∂Di ∩ {q1, . . . , qk} has exactly two
points. The treatment of case (c) is completely similar to that of case (b), thus, its proof
will not be provided.

(a) Since Di does not contain any vertex of Ω, (2.8), (2.9), and (2.10) imply that there
exist two positive constants Ai and Bi such that

∣

∣

∣
v(x, t) − f

(

t−
1
2 (x − pi) · νi

)∣

∣

∣
≤ Ai e−

Bi
t for all x ∈ Di, t > 0. (3.23)

Let ei be a unit vector orthogonal to νi. If ε is sufficiently small, we can parametrize
Dε(pi) as

Dε(pi) = {x = pi + z1 νi + z2 ei : 0 < z1 < ε, ϕ−(z1) < z2 < ϕ+(z1)}, (3.24)

where now ϕ−(0) = −ρ, ϕ+(0) = ρ, and ϕ′
−(0) = cotα, ϕ′

+(0) = − cotα. Note that x∗,
the reflection of x ∈ Dε(pi), is given by

x∗ = pi − z1 νi + z2 ei.

We compute:

1

t

∫

Dε(pi)

(x − x∗) f
(

t−
1
2 (x − pi) · νi

)

dx =

1

t

∫ ε

0

[

2z1νif
(

t−
1
2 z1

)

∫ ϕ+(z1)

ϕ−(z1)

dz2

]

dz1 =

2νi

∫ t
−

1
2 ε

0

[ϕ+(t
1
2 ξ) − ϕ−(t

1
2 ξ)] ξf(ξ) dξ,

and hence by Lebesgue’s dominated convergence theorem we get

lim
t→0+

1

t

∫

Dε(pi)

(x − x∗) f
(

t−
1
2 (x − pi) · νi

)

dx = 4ρνi

∫ ∞

0

ξf(ξ) dξ.

With the aid of (3.23) and (2.6), we obtain (3.22).
(b) As in case (a), we consider the parametrization x = pi + z1 νi + z2 ei of a point

in the set Dε(pi) given in (3.24); additionally, we will assume that pi − ρei is the point of
∂Di ∩ {q1, . . . , qk}.

Take a small number δ ∈ (0, ϕ−(ε) + ρ) and set

Dε
+(pi) = {x : 0 < z1 < ε, max(ϕ−(z1), δ − ρ) < z2 < ϕ+(z1)},

Dε
−(pi) = {x : 0 < z1 < ε, min(ϕ−(z1), δ − ρ) < z2 < δ − ρ}. (3.25)

Then Dε(pi) = Dε
+(pi) ∪ Dε

−(pi).

Since Dε
+(pi) does not contain any vertex of Ω, from (2.8), (2.9) and (2.10) it follows

that for some positive constants A+
i and B+

i

∣

∣

∣
v(x, t) − f

(

t−
1
2 (x − pi) · νi

)∣

∣

∣
≤ A+

i e−
B

+
i
t for all x ∈ Dε

+(pi), t > 0. (3.26)

Since the point pi − ρ ei is a vertex of Ω, from (2.9) and (2.10) we have that for some
positive constants A−

i and B−
i

0 < v(x, t) ≤ 2 f
(

t−
1
2 (x − pi) · νi

)

+ A−
i e−

B
−

i
t

for all x ∈ Dε
−(pi), t > 0. (3.27)
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We now compute:

1

t

∫

Dε
+

(pi)

(x − x∗) f
(

t−
1
2 (x − pi) · νi

)

dx =

2νi

t

∫ ε

0

z1f
(

t−
1
2 z1

)

[ϕ+(z1) − max(ϕ−(z1), δ − ρ)] dz1 =

2νi

∫ t
−

1
2 ε

0

[ϕ+(t
1
2 ξ) − max(ϕ−(t

1
2 ξ), δ − ρ)] ξf(ξ) dξ,

and hence, by Lebesgue’s dominated convergence theorem and (2.6), we get

lim
t→0+

1

t

∫

Dε
+

(pi)

(x − x∗) f
(

t−
1
2 (x − pi) · νi

)

dx = 2(2ρ− δ)νi.

As before, we conclude that

lim
t→0+

1

t

∫

Dε
+

(pi)

(x − x∗) v(x, t) dx = 2(2ρ− δ)νi. (3.28)

On the other hand, we have

1

t

∫

Dε
−

(pi)

|x − x∗| f
(

t−
1
2 (x − pi) · νi

)

dx =

2

t

∫ ε

0

z1f
(

t−
1
2 z1

)

[δ − ρ − min(ϕ−(z1), δ − ρ)] dz1 =

2

∫ t
−

1
2 ε

0

[δ − ρ − min(ϕ−(t
1
2 ξ), δ − ρ)] ξf(ξ) dξ,

and hence by Lebesgue’s dominated convergence theorem we get

lim
t→0+

1

t

∫

Dε
−

(pi)

|x − x∗| f
(

t−
1
2 (x − pi) · νi

)

dx = 2δ.

Therefore (3.27) implies that

lim sup
t→0+

∣

∣

∣

∣

∣

1

t

∫

Dε
−

(pi)

(x − x∗) v(x, t) dx

∣

∣

∣

∣

∣

≤ 4δ

and thus, by (3.28), we get:

lim sup
t→0+

∣

∣

∣

∣

∣

1

t

∫

Dε(pi)

(x − x∗) v(x, t) dx − 4ρνi

∣

∣

∣

∣

∣

≤ 6δ.

Since δ > 0 is chosen arbitrarily small, we again obtain (3.22).

We are now ready to prove Theorem 1.4.

Proof of Theorem 1.4. In view of Lemma 2.1, it suffices to consider the integrals in
(2.14) over the unions of the sets Eε(sj) ∪ Eε(qj) and Dε(pi), respectively, for ε > 0

11



sufficiently small. Lemma 2.1 thus guarantees that

lim
n→∞

1

tn

[
∫

E

xv(x, tn) dx +

∫

D

(x − x∗) v(x, tn) dx

]

=

lim
n→∞

1

tn

ℓ
∑

j=1

∫

Eε(sj)

xv(x, tn) dx + lim
n→∞

1

tn

k
∑

j=1

∫

Eε(qj)

xv(x, tn) dx

+ lim
n→∞

1

tn

m
∑

i=1

∫

Dε(pi)

(x − x∗)v(x, tn) dx.

Lemmas 3.1, 3.2, 3.4, and 3.5 yield that

lim
n→∞

1

tn

[
∫

E

xv(x, tn) dx +

∫

D

(x − x∗) v(x, tn) dx

]

= 2 cotα
ℓ

∑

j=1

sj + λ
k

∑

j=1

qj −
4ρ

R

m
∑

i=1

pi.

Therefore (2.13) implies

2 cotα

ℓ
∑

j=1

sj + λ

k
∑

j=1

qj −
4ρ

R

m
∑

i=1

pi = 0

and, by using (1.8) and (3.2), we get

(λ − 4 cotα)

k
∑

j=1

qj = 0.

Therefore, since λ ∈ [4 cot 2α, 8 cot 2α], we obtain (1.9). This completes the proof of
Theorem 1.4.

4 The proof of Theorem 1.3

Let Cp = ∂BR(0) and Cq = ∂BR∗(0) be the circles containing the points p1, . . . , pm

and q1, . . . , qk respectively. As already observed, since ∂Ω is circumscribed to Cp, all the
angles of Ω at the vertices q1, . . . , qk are equal to each other. Also, notice that (1.9) directly
implies that k ≥ 2.

(1) We distinguish four cases (see Fig. 3). (i) Let k = 2; then q1 and q2 are opposite.
Label by p1, p2, p3 and p4 the points in ∂Ω ∩ Cp lying on the sides of Ω issuing from q1

and q2. They must be the vertices of a rectangle centered at 0; hence
4
∑

i=1

pi = 0 and, by

(1.8), p5 = 0 — a contradiction.
(ii) If k = 3, q1, q2 and q3 are the vertices of an equilateral triangle, that we call T ; Ω

and T have at least one side in common. Then Cp must be the inscribed circle of T and
any side of Ω issuing from any vertex of Ω lying outside Cq cannot intersect Cp, since it
must lie outside T — a contradiction.

(iii) Let k = 4. Since (1.9) holds, the qj ’s must be pairwise opposite and also be the
vertices of a rectangle, for they all lie on Cq. Such rectangle and Ω must have at least
three sides in common (tangent to Cp); this fact implies that the qj ’s are the vertices of
a square. Hence, two sides of Ω issuing from the vertex of Ω lying outside Cq cannot
intersect Cp — a contradiction.
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Figure 3: Proof of Theorem 1.3, item (1), cases (i), (ii) and (iii).

(iv) If k = 5, all the vertices of Ω lie on Cq and hence all the angles of Ω must be equal
to each other. The fact that ∂Ω is circumscribed to Cp also implies that all the sides of Ω
have equal length, that is Ω must be regular.

(2) We distinguish five cases (see Fig. 4). (i) If k = 2, then q1 and q2 are opposite.
As in the proof of (2), k = 2, we let p1, p2, p3 and p4 be the points in ∂Ω ∩ Cp lying on

the sides of Ω issuing from q1 and q2. We have that
4
∑

i=1

pi = 0 and, by (1.8), it follows

that p5 + p6 = 0. Therefore, all the points pi’s are pairwise opposite and so are vertices of
Ω; hence, Ω is centrally symmetric. In other words, Ω is invariant under a rotation of an
angle π.

(ii) If k = 3, q1, q2 and q3 are the vertices of an equilateral triangle, that we call T .
If Ω and T have a side in common, then we get a contradiction, by the same argument
used in the proof of (1), k = 3. If Ω and T have no side in common, then also the vertices
of Ω lying outside Cq must be the vertices of an equilateral triangle. In fact, since ∂Ω is
circumscribed to Cp, such vertices lie on the three half-lines through the origin and the
points q1 + q2, q2 + q3, and q3 + q1, respectively, and have the same distance from the
origin. Therefore, Ω is invariant under a rotation of an angle 2π/3.

q1

q2

p1 p2

p3 p4

q1
q2

q3

q1 q2

q3q4

σ2

σ1

Figure 4: Proof of Theorem 1.3, item (2), cases (i), (ii) and (iii).

(iii) Let k = 4. Since (1.9) holds, the qj ’s must be pairwise opposite and also be
the vertices of a rectangle R, for they all lie on Cq. Ω and R have at least one side in
common: let such a side be σ1; σ1 must be a shorter side of R, since otherwise Cp would
be contained in R and hence at least one side of Ω would not intersect Cp. Thus, the side
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σ2 of R opposite to σ1 must also be a side of Ω and the midpoints p1 and p2 of σ1 and

σ2 are such that p1 + p2 = 0. By (1.8) we have that
6
∑

i=3

pi = 0. Therefore, the pi’s are

pairwise opposite and, as in the case k = 2, Ω is invariant under a rotation of an angle π.
(iv) The case k = 5 cannot occur. We can assume that the segments joining q1 to q2,

q2 to q3, q3 to q4, and q4 to q5 are sides of Ω. Since the angles of Ω at the points qj ’s are all
equal to each other, we can suppose that qj = R∗(cos(j−1)θ, sin(j−1)θ), j = 1, . . . , 5 for
some positive angle θ. Then (1.9) implies that θ = 2π/5, that is the qj ’s are the vertices of
a regular pentagon that contains Cp. Therefore, the sides of Ω issuing from the vertex of Ω
outside Cq cannot intersect Cp because they lie outside the pentagon — a contradiction.

(v) If k = 6, all the vertices of Ω lie on Cq and hence all the angles of Ω must be equal
to each other. The fact that ∂Ω is circumscribed to Cp also implies that all the sides of Ω
have equal length, that is Ω must be regular.
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