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Abstract

We consider the flow of a gas into a bounded tank ≠ with smooth
boundary @≠. Initially ≠ is empty and at all times the density of the
gas is kept constant on @≠. Choose a number R > 0 sufficiently small
to have that, for any point x in ≠ having distance R from @≠, the
closed ball B with radius R centered at x intersects @≠ only at one
point.

We show that if the gas content of such balls B is constant at
each given time, then the tank ≠ must be a ball. In order to prove
this, we derive an asymptotic estimate for gas content for short times.
Similar estimates are also derived in the case of the evolution p-Laplace
equation for p ≥ 2.
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1 Introduction

We consider the flow of a gas into a bounded porous tank; the tank is initially
empty and, at all times, the gas density is kept constant on the tank walls.
This physical situation can be modeled as an initial-boundary value problem
for a degenerate parabolic equation.
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We assume that our tank is represented by a bounded domain ≠ in
RN , N ≥ 2, with smooth (say C2) boundary @≠; the normalized density
of gas at a point x ∈ ≠ and time t > 0 is denoted by a function u = u(x, t)
satisfying the problem:

ut = ∆φ(u) in ≠× (0,1), (1.1)

u = 1 on @≠× (0,1), (1.2)

u = 0 on ≠× {0}, (1.3)

where φ : [0,1) → [0,1) is such that

φ(0) = φ0(0) = 0, φ ∈ C1([0,1)) ∩ C2((0,1)), (1.4)

φ0(s) > 0 for s > 0, and (1.5)Z 1

0

φ0(s)
s

ds < 1. (1.6)

Existence and uniqueness of a bounded weak solution and the comparison
principle are derived in [H] and [DK], with the aid of the regularity result of
Sacks [S], together with the basic theory of quasilinear parabolic equations
in [LSU]. It is known that condition (1.6) holds if and only if the equation
ut = ∆φ(u) has the property of finite speed of propagation of disturbances
from rest (see [P],[G]).

The purpose of this paper is to investigate how the shape of the tank in-
fluences the short time diffusion of gas from the tank walls. As an application
of this investigation, we will prove a new symmetry result for the problem
(1.1)-(1.3).

As a reference example of the situation considered here, the reader should
keep in mind the case of the porous medium equation, in which φ(u) = um

and m > 1 is a parameter. The property of finite speed of propagation of
disturbances from rest implies that for any point x ∈ ≠ there exists a time
T = T (x) > 0 such that u(x, t) = 0 for all t ∈ [0, T (x)] and u(x, t) > 0 for
all t > T (x).

When φ(u) = um with m > 1 and @≠ is of class C4, the dependence of T
on x has been estimated by C. Cortázar, M. Del Pino, and M. Elgueta (see
Theorem 1.1 in [CDE]) in terms of the distance of x from @≠, that from now
on we will denote by d(x), and the mean curvature of @≠; in fact, they prove
the estimate:

T (x) = d2{T0 − (N − 1)H(y(x))T1d + o(d)}, d = d(x), x ∈ ≠δ0 . (1.7)

Here, T0 and T1 are positive constants depending only on m;

≠δ0 = {x ∈ ≠ : d(x) < δ0}; (1.8)
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δ0 > 0 is chosen so small that

d ∈ C2(≠δ0); (1.9)

for every x ∈ ≠δ0 there exixts

a unique y = y(x) ∈ @≠ such that d(x) = |x− y|; (1.10)

max
1∑j∑N−1

∑j(y) <
1

δ0
for any y ∈ @≠. (1.11)

Here and in the sequel, ∑1(y), · · · , ∑N−1(y) denote the principal curvatures
of @≠ at y ∈ @≠ with respect to the interior normal direction to ≠, while

H(y) =
1

N − 1

N−1X
j=1

∑j(y)

is the mean curvature of @≠ at y ∈ @≠. (See [GT], Section 14.6, pp. 354–357.)
A straightforward conclusion that can be drawn from (1.7) is the following

symmetry result.

Theorem 1.1 Suppose that there exists a number δ > 0 such that, for any
pair of points x1, x2 ∈ ≠δ, d(x1) = d(x2) implies T (x1) = T (x2).

Then ≠ must be a ball.

This result says that, if the gas flow reaches at the same time T points at
equal distance from the tank’s walls, then the tank has spherical shape. In
fact, Theorem 1.1 is an easy consequence of V.I. Aleksandrov’s Soap Bubble
Theorem (see [Alek] p. 412, [R]), since its assumption implies that H must
be constant on @≠.

In this paper we prove the symmetry result summarized in Theorem 1.2
below. Notice preliminarily that, if R is a positive number such that R < δ0,
then for every point x in the parallel set ΓR = {z ∈ ≠ : d(z) = R} to @≠,
the closure of the ball B(x, R) = {z ∈ RN : |z − x| < R} intersects @≠ only
at the point y(x) defined in (1.10).

Theorem 1.2 Suppose that, for every fixed time t ∈ (0, 1) and any x ∈ ΓR,
the gas content of B(x, R), Z

B(x,R)

u(z, t) dz, (1.12)

does not depend on x.
Then ≠ must be a ball.

This result is based on the following asymptotic estimate.
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Theorem 1.3 For all x ∈ ΓR, we have

lim
t→0+

t−
N+1

4

Z
B(x,R)

u(z, t) dz = c(φ,N)

(
N−1Y
j=1

∑
1

R
− ∑j(y(x))

∏)− 1
2

, (1.13)

where y(x) ∈ @≠ is the point defined in (1.10) and c(φ,N) is a positive
constant depending only on φ and N .

Remark 1.4 When N = 3 in Theorem 1.3, the constant c(φ,N) is given by
c(φ, 3) = 2πφ(1) (see Section 4). Hence, if φ(1) = 1, then c(φ, 3) just equals
c(3) (= 2π), where c(3) is the constant for the heat equation in Theorem 4.2
in Section 4.

The assumption of Theorem 1.2 implies that the right-hand side of (1.13)
must be constant on @≠ and hence, again, we can use V.I. Aleksandrov’s
theorem to infer the symmetry of ≠.

In [MS], we proved an estimate similar to (1.13) for solutions of the
resolvent equation ∆u − su = 0, when the parameter s → +1. In the
present paper, besides deriving (1.13) for solutions of (1.1)-(1.3), with quite
general assumptions on φ, we also propose a different and simpler proof. As
in [MS], (1.13) is a consequence of the presence of a boundary layer for the
solution of (1.1)-(1.3) when t → 0+.

Technically, (1.13) is obtained by working on integrals of the formZ
B(x,R)

F (t−
1
2 d(z)) dz,

which bound the gas content (1.12) from above and below; F is determined
in such a way that F (t−

1
2 d(z)) is either a supersolution or a subsolution of

(1.1)-(1.3) and its construction is simpler than the one worked out in [CDE].
The paper is organized as follows. In Section 2, we prove the asymptotic

formula (2.1) on which (1.13) is based; the supersolutions and subsolutions
for (1.1)-(1.3) are constructed in Section 3.

In Section 3, we also consider the heat and the evolution p-Laplace equa-
tion with p > 2,

ut = div (|∇u|p−2∇u),

and find useful super and subsolutions for it. While the latter is another
example of degenerate diffusion equation that has the property of finite speed
of propagation of disturbances from rest, for the former such a speed is infinite
and some extra work is needed. The technical details needed for all these
results are proved in Section 5.

Finally, in Section 4, we prove our symmetry result, Theorem 1.3, and
asymptotic estimates similar to (1.13) for the heat and the evolution p-
Laplace equation with p > 2 (see Theorems 4.1 and 4.2).
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2 Asymptotics

The following asymptotic formula is crucial to establish the initial behavior
of u.

Lemma 2.1 Let @≠ be of class C2, y ∈ @≠, and B(x, R) be an open ball
centered at x and with radius R > 0 such that B(x, R) ∩ (RN \ ≠) = {y}.
Suppose that ∑j(y) < 1

R
for j = 1, . . . , N−1, where ∑1(y), · · · , ∑N−1(y) denote

the principal curvatures of @≠ at y ∈ @≠ with respect to the interior normal
direction to ≠. Then we have:

lim
s→0+

s−
N−1

2 HN−1(Γs ∩B(x, R)) = 2
N−1

2 ωN−1

nN−1Y
j=1

h 1

R
− ∑j(y)

io− 1
2
, (2.1)

where HN−1 is the standard (N − 1)-dimensional Hausdorff measure, and
ωN−1 is the volume of unit ball in RN−1.

Proof. By suitably translating and rotating the coordinate axes, we can
suppose that y = 0, the tangent space Ty(@≠) to @≠ at y coincides with the
hyperplane zN = 0, the exterior unit normal vector ∫(y) to @≠ at y points
in the negative zN direction, and x = (0, · · · , 0, R). By a further rotation
around the zN -axis, we can also choose the coordinates z1, . . . , zN−1 in such
a way the function d satisfies the formulas

d(z) = zN − 1

2

N−1X
j=1

∑j(y) z2
j + o(|z|2), (2.2)

@d(z)

@zN
= 1 + o(|z|). (2.3)

Notice that, with this choice of coordinates, the ball B(x, R) is represented
by the inequality |z0|2 + (zN − R)2 < R2, where z0 = (z1, . . . , zN−1). Then,
near the origin, @B(x, R) is represented by

zN = R−
p

R2 − |z0|2 =
1

2R
|z0|2 + O(|z0|3). (2.4)

Combining (2.2) with (2.4) yields

d(z) =
1

2

N−1X
j=1

µ
1

R
− ∑j(y)

∂
z2

j + o(|z0|2) for z ∈ B(0, R) ∩ @B(x, R). (2.5)

Since B(x, R) ∩ (RN \ ≠) = {0}, for any ε > 0, there exists sε > 0 such that

Γs ∩B(x, R) Ω B(0, ε) if 0 < s < sε. (2.6)
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Thus, because of (2.3), if ε > 0 is sufficiently small and 0 < s < sε, Γs ∩
B(x, R) is represented by the graph of a smooth function zN = √(z0). Dif-
ferentiating d(z0, √(z0)) = s with respect to zj yields

dxN∇z0√ +∇z0d = 0,

which together with |∇d| = 1 implies thatp
1 + |∇z0√|2 = 1/dxN (2.7)

Projecting Γs ∩ B(x, R) orthogonally on the plane zN = 0 yields a domain
As Ω RN−1. Let η > 0 be sufficiently small. In view of (2.5) and (2.6), there
exists ε0 > 0 such that, for any 0 < s < sε0 , we have

E+
s Ω As Ω E−

s , (2.8)

where E±
s are two ellipsoids defined by

E±
s = {z0 ∈ RN−1 :

1

2

N−1X
j=1

µ
1

R
− ∑j(y) ± η

∂
z2

j < s}. (2.9)

Also, combining (2.3) with (2.7) yields that

1 ∑
p

1 + |∇z0√|2 < 1 + η, (2.10)

for each 0 < s < sε0 . Hence, it follows from (2.8) and (2.10) thatZ
E+

s

1 dz0 ∑ HN−1(Γs ∩B(x, R)) ∑
Z

E−
s

(1 + η) dz0, (2.11)

for any 0 < s < sε0 , since

HN−1(Γs ∩B(x, R)) =

Z
As

p
1 + |∇z0√|2 dz0.

Thus, from (2.11) we see that

2
N−1

2 ωN−1

nN−1Y
j=1

h 1

R
− ∑j(y) + η

io− 1
2 ∑ s−

N−1
2 HN−1(Γs ∩B(x, R))

∑ 2
N−1

2 ωN−1

nN−1Y
j=1

h 1

R
− ∑j(y)− η

io− 1
2
,

for any 0 < s < sε0 .
Since η > 0 is arbitrarily small, we conclude that (2.1) holds.

6



3 Super and Subsolutions

In this section, we shall construct super and subsolutions for problem (1.1)-
(1.3).

The same techniques can be adapted to derive super and subsolutions
for the p−Laplace equation with p > 2; this will be done with Theorem
3.2. Similarly to (1.1), also this equation has the property of finite speed of
propagation of disturbances from rest.

Some extra work is needed instead when such a speed is infinite as in
the heat equation. In this case, we need to take care of the exponentially
vanishing behavior of the solution inside the domain. We shall do this in
Lemma 3.5.

Our construction of super and subsolutions for problem (1.1)-(1.3) is much
simpler than that in [CDE], and hence we can deal with more general equa-
tions. By a result of Atkinson and Peletier (see Theorem 1 in [AtP]), there
exist a number a > 0 and a classical solution f = f(ξ) of the following
boundary value problem:

(φ0(f)f 0)0 +
1

2
ξf 0 = 0 in [0, a), (3.1)

f(0) = 1, f(ξ) → 0, φ0(f)f 0(ξ) → 0 as ξ → a, (3.2)

and f(ξ) > 0, f 0(ξ) < 0 in [0, a). (3.3)

Obviously in (3.2), ξ tends to a from below. We define a function F =
F (ξ) (ξ ≥ 0) by

F (ξ) =

Ω
f(ξ) if 0 ∑ ξ < a,

0 if ξ ≥ a.
(3.4)

Let 0 < ε < a
8 . With the aid of the function F = F (ξ), by the same argument

used in [AtP], Theorem 1, we can also find two positive numbers a± and two
classical solutions f± = f±(ξ) of the following boundary value problem (see
the end of Section 5 for the proof):°

φ0(f±)f 0±
¢0

+
1

2
(ξ ∓ 2ε)f 0± = 0 in [0, a±), (3.5)

f±(0) = 1, f±(ξ) → 0, φ0(f±)f 0±(ξ) → 0 as ξ → a±, (3.6)

and f±(ξ) > 0, f 0±(ξ) < 0 in [0, a±). (3.7)

Obviously in (3.6), ξ tends to a± from below. We define two functions F± =
F±(ξ) (ξ ≥ 0) by

F±(ξ) =

Ω
f±(ξ) if 0 ∑ ξ < a±,

0 if ξ ≥ a±.
(3.8)

Now, we set

w±(x, t) = F±
≥
t−

1
2 d(x)

¥
for (x, t) ∈ ≠× (0,1), (3.9)
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and, by Lemma 5.1, show that they are super and subsolutions for (1.1)-(1.3).

Theorem 3.1 Let u be the solution of problem (1.1)-(1.3). For each ε ∈
(0, a

8
), there exists tε > 0 such that

w− ∑ u ∑ w+ in ≠× (0, tε],

where w± are defined by (3.9).

Proof. By Lemma 5.1 we have

0 < a− ∑ a ∑ a+ <
5

4
a for any ε ∈ (0,

a

8
); (3.10)

then we set

τ =

µ
δ0

4a

∂2

, (3.11)

where δ0 > 0 is determined in (1.8)-(1.11).
Hence, if 0 < ε < a

8 and 0 < t ∑ τ, then

{ x ∈ ≠ : w−(x, t) > 0 } Ω { x ∈ ≠ : w+(x, t) > 0 } Ω ≠ 1
2 δ0 Ω ≠δ0 .

With the aid of this and (1.9), a straightforward computation gives

(w±)t −∆φ(w±) = −1

t
f 0±

≥
±ε + t

1
2 φ0(f±)∆d

¥
in

[
0<t∑τ

{ x ∈ ≠ : w±(x, t) > 0 } × {t}. (3.12)

For each ε ∈ (0, a
8), set

tε = min

Ω
τ,

≥ ε

2ΦD

¥2
æ

, (3.13)

where Φ = max
0∑s∑1

φ0(s) and D = max
x∈≠δ0

|∆d(x)|. Thus, in view of the definition

of f±, by using (3.10) and (3.12), we conclude that

(±1)
n

(w±)t −∆φ(w±)
o

> 0

in
[

0<t∑tε

{ x ∈ ≠ : w±(x, t) > 0 } × {t}. (3.14)

This implies that w+ and w− are weak super and subsolutions for problem
(1.1)-(1.3) in ≠ × (0, tε], and hence the comparison principle completes the
proof.
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We now proceed to derive similar comparison results for the evolution
p−Laplace equation with p > 2, that is, we want to consider the unique
weak solution u of the initial-boundary value problem:

ut = div (|∇u|p−2∇u) in ≠× (0,1), (3.15)

u = 1 on @≠× (0,1), (3.16)

u = 0 on ≠× {0}. (3.17)

See [DiB] for existence and uniqueness results for this problem.
For ∏ ≥ ξ ≥ 0, define ' = '∏(ξ) by

'∏(ξ) = 1−
∑

p− 2

2p(p− 1)

∏ 1
p−2

Z ξ

0

(∏2 − η2)
1

p−2 dη. (3.18)

A positive number ξ0 > 0 is determined by the equation 'ξ0(ξ0) = 0. Then
' = 'ξ0(ξ) satisfies the following:

(p− 1)|'0|p−2'00 +
1

p
'0ξ = 0 in [0, ξ0), (3.19)

'(0) = 1, '0(ξ0) = '(ξ0) = 0, (3.20)

and '0 < 0 in [0, ξ0). (3.21)

We define the function F = F (ξ) (ξ ≥ 0) by

F (ξ) =

Ω
'(ξ) if 0 ∑ ξ ∑ ξ0,

0 if ξ > ξ0.
(3.22)

For each ε ∈ (0, ξ0
2p), when ∏ ≥ ξ ≥ 0 and ∏ ≥ max{±2pε, 0}, define √ =

√±,∏(ξ) by

√±,∏(ξ) = 1−
µ

p− 2

2p(p− 1)

∂ 1
p−2

Z ξ

0
{(∏− η)(∏ + η ∓ 2pε)} 1

p−2 dη. (3.23)

Two positive numbers ξ± > 0 are determined by the equations √±,ξ±(ξ±) = 0.
Compared with 'ξ0(ξ0) = 0, we see that ξ+ > ξ0 (> 2pε). This guarantees
the existence of ξ+ ≥ 2pε. Then √ = √±,ξ±(ξ) satisfy the following problems:

(p− 1)|√0|p−2√00 +
1

p
(ξ ∓ pε)√0 = 0 in [0, ξ±), (3.24)

√(0) = 1, √0(ξ±) = √(ξ±) = 0, (3.25)

and √0 < 0 in [0, ξ±), (3.26)

respectively.
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We define two functions F± = F±(ξ) (ξ ≥ 0) by

F±(ξ) =

Ω
√±,ξ±(ξ) if 0 ∑ ξ ∑ ξ±,

0 if ξ > ξ±.
(3.27)

By setting

w±(x, t) = F±
≥
t−

1
p d(x)

¥
for (x, t) ∈ ≠× (0,1), (3.28)

with the help of Lemma 5.2, we obtain the following result.

Theorem 3.2 Let u be the solution of problem (3.15)-(3.17). For each ε ∈
(0, ξ0

2p), there exists tε > 0 satisfying

w− ∑ u ∑ w+ in ≠× (0, tε],

where w± are defined by (3.28).

Proof. By Lemma 5.2 we have

0 < ξ− < ξ0 < ξ+ <
3

2
ξ0. (3.29)

Then we set

τ =

µ
δ0

4ξ0

∂p

, (3.30)

where δ0 > 0 is determined in (1.8)-(1.11). Hence, if 0 < ε < ξ0
2p

and
0 < t ∑ τ, then

{ x ∈ ≠ : w−(x, t) > 0 } Ω { x ∈ ≠ : w+(x, t) > 0 } Ω ≠ 1
2 δ0 Ω ≠δ0 .

With the aid of this and (1.9), a straightforward computation gives

(w±)t − div (|∇w±|p−2∇w±) = −1

t
√0±,ξ±

≥
±ε + t

1
p |√0±,ξ±|p−2∆d

¥
in

[
0<t∑τ

{ x ∈ ≠ : w±(x, t) > 0 } × {t}. (3.31)

For each ε ∈ (0, ξ0
2p), set

tε = min

Ω
τ,

µ
p(p− 1)ε

4ξ2
0(p− 2)D

∂pæ
, (3.32)

where D = max
x∈≠δ0

|∆d(x)|. Thus, in view of the definition (3.23) of √±,ξ± , by

using (3.29) and (3.31) we conclude that

(±1)
n

(w±)t − div (|∇w±|p−2∇w±)
o

> 0

in
[

0<t∑tε

{ x ∈ ≠ : w±(x, t) > 0 } × {t}. (3.33)
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This implies that w+ and w− are weak super and subsolutions for problem
(3.15)-(3.17) in ≠× (0, tε], and hence the comparison principle completes the
proof.

Finally, we shall construct super and subsolutions for the initial-boundary
value problem for the heat equation:

ut = ∆u in ≠× (0,1), (3.34)

u = 1 on @≠× (0,1), (3.35)

u = 0 on ≠× {0}. (3.36)

Since heat equation has the property of infinite speed of propagation of dis-
turbances from rest, we need to take care of the inside of ≠. With the aid
of the linearity of heat equation, we can overcome this difficulty. Define
F = F (ξ) (ξ ≥ 0) by

F (ξ) =
1√
π

Z 1

ξ

e−
1
4 s2

ds

µ
= 1− 1√

π

Z ξ

0

e−
1
4 s2

ds

∂
. (3.37)

Then F satisfies the following properties:

F 00 +
1

2
ξF 0 = 0 in [0,1), (3.38)

F (0) = 1, F (ξ) → 0 as ξ →1, (3.39)

and F 0 < 0 in [0,1). (3.40)

Also, for each ε ∈ (0, 1), we define two functions F± = F±(ξ) (ξ ≥ 0) by

F±(ξ) =
1

C±

Z 1

ξ

e−
1
4 (s∓2ε)2ds

µ
= 1− 1

C±

Z ξ

0

e−
1
4 (s∓2ε)2ds

∂
, (3.41)

where C± =
R1
∓2ε

e−
1
4 s2

ds. Then F± satisfy the following properties

F 00
± +

1

2
(ξ ∓ 2ε)F 0

± = 0 in [0,1), (3.42)

F±(0) = 1, F±(ξ) → 0 as ξ →1, (3.43)

and F 0
± < 0 in [0,1), (3.44)

respectively.
By setting

v±(x, t) = F±
≥
t−

1
2 d(x)

¥
for (x, t) ∈ ≠× (0,1), (3.45)

we obtain the following result.
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Lemma 3.3 For each ε ∈ (0, 1), there exists t1,ε > 0 satisfying

(±1) {(v±)t −∆v±} > 0 in ≠δ0 × (0, t1,ε].

Proof. With the aid of (1.9), a straightforward computation gives

(v±)t −∆v± = −1

t

≥
±ε +

√
t∆d

¥
F 0
± in ≠δ0 × (0,1).

Then, for each ε ∈ (0, 1), by setting

t1,ε =
≥ ε

2D

¥2
,

where D = max
x∈≠δ0

|∆d(x)|, we complete the proof.

Let u be the solution of problem (3.34)-(3.36). A result of Varadhan [V]
shows that

−4t log u(x, t) → d(x)2 as t → 0+ uniformly on ≠. (3.46)

Then, in view of this and the definition (3.45) of v±, we have

Lemma 3.4 There exist three positive constants t0, E1 and E2 satisfying

max{|v+|, |v−|, |u|} ∑ E1e
−E2

t in ≠ \ ≠δ0 × (0, t0],

where u is the solution of problem (3.34)-(3.36).

Proof. If we choose t0 ∈ (0,
°

δ0
4

¢2
], then by (3.45) we can show the desired

inequalities for v±. As for u, by (3.46) we can choose t0 > 0 such thatØØ4t log u(x, t) + d(x)2
ØØ <

1

2
δ2
0 for (x, t) ∈ ≠× (0, t0],

and hence

u(x, t) < e−
d(x)2− 1

2 δ20
4t for (x, t) ∈ ≠× (0, t0].

Since d(x) ≥ δ0 for x ∈ ≠ \ ≠δ0 , we get the desired inequality for u.
By setting

w±(x, t) = v±(x, t) ± E1e
−E2

t for (x, t) ∈ ≠× (0,1), (3.47)

we have the following result.

Theorem 3.5 Let u be the solution of problem (3.34)-(3.36). For each ε ∈
(0, 1), there exists tε > 0 satisfying

w− ∑ u ∑ w+ in ≠× (0, tε],

where w± are defined by (3.47).
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Proof. For each ε ∈ (0, 1), we set

tε = min{t1,ε, t0}.
Since v+, v−, and u are all nonnegative, Lemma 3.4 implies that

w− ∑ u ∑ w+ in ≠ \ ≠δ0 × (0, tε]. (3.48)

Observe that

w− ∑ u ∑ w+ on @≠× (0, tε], (3.49)

w− = u = w+ = 0 on ≠× {0}. (3.50)

Therefore, with the aid of the comparison principle, in view of Lemma 3.3,
(3.48), (3.49), and (3.50), we complete the proof.

4 Symmetry results

We begin with the proof of Theorem 1.3 together with Remark .

Proof. Let x0 ∈ ΓR and put y0 = y(x0) ∈ @≠. Take ε ∈ (0, a
8). By

Theorem 3.1 we get for any t ∈ (0, tε)Z
B(x0,R)

w−(x, t) dx ∑
Z

B(x0,R)

u(x, t) dx ∑
Z

B(x0,R)

w+(x, t) dx. (4.1)

Integrating on the level surfaces of d by the coarea formula gives:Z
B(x0,R)

w±(x, t) dx =

Z 2R

0

F±
≥
t−

1
2 s

¥
HN−1(Γs ∩B(x0, R)) ds,

where Γs = {x ∈ ≠ : d(x) = s}. Setting s = t
1
2 ξ yields that

t−
N+1

4

Z
B(x0,R)

w±(x, t) dx

=

Z 2Rt−
1
2

0

F±(ξ)ξ
N−1

2 · (t
1
2 ξ)−

N−1
2 HN−1(Γ

t
1
2 ξ
∩B(x0, R)) dξ.

Then, it follows from Lemma 2.1 and Lebesgue’s dominated convergence
theorem that

lim
t→0+

t−
N+1

4

Z
B(x0,R)

w±(x, t) dx

=

Z a±

0

f±(ξ)ξ
N−1

2 dξ · 2N−1
2 ωN−1

nN−1Y
j=1

h 1

R
− ∑j(y0)

io− 1
2
.

13



Since ε > 0 is arbitrarily small, combining this with (4.1) and Lemma 5.1
yields

lim
t→0+

t−
N+1

4

Z
B(x0,R)

u(x, t) dx

=

Z a

0

f(ξ)ξ
N−1

2 dξ · 2N−1
2 ωN−1

nN−1Y
j=1

h 1

R
− ∑j(y0)

io− 1
2
.

This shows that (1.13) holds with c(φ,N) = 2
N−1

2 ωN−1

R a
0 f(ξ) ξ

N−1
2 dξ.

In particular, when N = 3, c(φ, 3) = 2π
R a

0 f(ξ)ξ dξ. Multiplying equa-
tion (3.1) by ξ and integrating by parts yield that

−
Z a

0

(φ(f))0 dξ −
Z a

0

f(ξ)ξ dξ = 0,

where (3.2) was used. This shows that c(φ, 3) = 2πφ(1).

The same arguments used in this proof, with slight modifications, lead to
the proofs of the two theorems below.

Theorem 4.1 Let u be the solution of problem (3.15)-(3.17). For all x ∈ ΓR,
we have

lim
t→0+

t−
N+1
2p

Z
B(x,R)

u(z, t) dz = c(p, N)

(
N−1Y
j=1

∑
1

R
− ∑j(y(x))

∏)− 1
2

, (4.2)

where ∑1, . . . , ∑N−1 denote the principal curvatures of @≠ with respect to the
interior normal direction to @≠, y(x) ∈ @≠ is the point defined in (1.10), and

c(p, N) =
2

N−1
2 ωN−1

N + 1

∑
p− 2

2p(p− 1)

∏ 1
p−2

B

µ
N + 3

4
,
p− 1

p− 2

∂
ξ

N+3
2 + 2

p−2

0 .

Here B is Euler’s beta function and ξ0 is that defined by 'ξ0(ξ0) = 0 where
'∏(ξ) is given by (3.18).

Theorem 4.2 Let u be the solution of problem (3.34)-(3.36). For all x ∈ ΓR,
we have

lim
t→0+

t−
N+1

4

Z
B(x,R)

u(z, t) dz = c(N)

(
N−1Y
j=1

∑
1

R
− ∑j(y(x))

∏)− 1
2

, (4.3)

where ∑1, . . . , ∑N−1 denote the principal curvatures of @≠ with respect to the
interior normal direction to @≠, y(x) ∈ @≠ is the point defined in (1.10), and

c(N) =
2N+1

√
π(N + 1)

Γ

µ
N + 3

4

∂
ωN−1.

Here Γ is Euler’s gamma function.
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5 Technical lemmas

A comparison argument yields the following result.

Lemma 5.1 Let F and F± be defined by (3.1)-(3.4) and (3.5)-(3.8), respec-
tively.

Then the following assertions hold:

(i) for each ε ∈ (0, a
8),

0 < a−2ε ∑ a− ∑ a ∑ a+ ∑ a+2ε and 0 ∑ F− ∑ F ∑ F+ in [0,1);

(ii) as ε ↓ 0, F± → F uniformly on [0,1).

Proof. Let ε ∈ (0, a
8
). Write

v± = φ(F±) and v = φ(F ). (5.1)

Then, for each ξ ∈ [0, a) or for each ξ ∈ [0, a±), integrating equation (3.1)
and (3.5) over the interval [0, ξ] yields that

v0(ξ)− v0(0) +
1

2

Z ξ

0

ηF 0(η) dη = 0,

v0±(ξ)− v0±(0) +
1

2

Z ξ

0

(η ∓ 2ε)F 0
±(η) dη = 0.

Furthermore, since F (0) = F±(0) = 1, we get by an integration by parts

v0(ξ) = v0(0)− 1

2
ξF (ξ) +

1

2

Z ξ

0

F (η) dη. (5.2)

v0±(ξ) = v0±(0)− 1

2

£
(ξ ∓ 2ε)F±(ξ) ± 2ε

§
+

1

2

Z ξ

0

F±(η) dη. (5.3)

Note that (3.2) and (3.6) implies that (5.2) and (5.3) hold also for ξ = a and
for ξ = a±, respectively. Hence by the definition of F and F± we conclude
that both (5.2) and (5.3) hold for any ξ ∈ [0,1).

Let us show that
F− ∑ F ∑ F+ in [0,1). (5.4)

Note that this implies that

a− ∑ a ∑ a+. (5.5)

Suppose that F ∑ F+ does not hold. Since F (0) = F+(0) = 1 and F (ξ) =
F+(ξ) = 0 for ξ ≥ max{a, a+}, there exists an open finite interval (α, β) in
[0,1) satisfying

F > F+ on (α, β) and F = F+ at {α, β}. (5.6)
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In particular, this yields that

v0(α) ≥ v0+(α) and v0(β) ∑ v0+(β). (5.7)

By using (5.2) and (5.3), we have

v0(β)− v0(α) = −1

2

£
βF (β)− αF (α)

§
+

1

2

Z β

α

F (η) dη, (5.8)

v0+(β)− v0+(α) = −1

2

£
(β − 2ε)F+(β)− (α− 2ε)F+(α)

§
+

1

2

Z β

α

F+(η) dη.

Therefore, since F = F+ at {α, β}, we conclude that

v0(β)−v0+(β)−£
v0(α)− v0+(α)

§
= −ε[F (β)−F (α)]+

1

2

Z β

α

[F (η)−F+(η)] dη.

Since F is non-increasing, by (5.6) the right-hand side of this equality is
positive, which contradicts (5.7). This shows that F ∑ F+ holds true.

By the same argument we can show that F− ∑ F also holds true, and
hence we complete the proof of (5.4).

We now prove (ii) and the first set of inequalities in (i) by using the two
auxiliary functions G± = G±(ξ)(ξ ≥ 0) defined by

G+(ξ) =

Ω
F (ξ − 2ε) if ξ ≥ 2ε,

1 if 0 ∑ ξ ∑ 2ε,
(5.9)

G−(ξ) = F (ξ + 2ε) for ξ ≥ 0. (5.10)

In fact, we will show that

G− ∑ F− and F+ ∑ G+ in [0,1), (5.11)

since this, together with (5.4) and (5.5), clearly yields (ii) and

a− 2ε ∑ a− ∑ a ∑ a+ ∑ a + 2ε.

Set V± = φ(G±) and suppose that F+ ∑ G+ does not hold. Since G+ = 1
and F+ < 1 on (0, 2ε] and F+(ξ) = G+(ξ) = 0 for ξ ≥ max{a+, a+2ε}, there
exists an open finite interval (α, β) in [2ε,1) satisfying

F+ > G+ on (α, β) and F+ = G+ at {α, β}. (5.12)

Since (5.8) holds true for any finite interval (α, β) in [0,1), we have that

V 0
+(β)− V 0

+(α) = −1

2

©
(β − 2ε)G+(β)− (α− 2ε)G+(α)

™
+

1

2

Z β

α

G+(η) dη.
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Hence, by using this instead of (5.8), by the same comparison argument as in
the proof of F ∑ F+, we obtain a contradiction and conclude that F+ ∑ G+

holds true.
By this same argument, inequality G− ∑ F− easily follows .

By similar comparison arguments, we can prove the following two lemmas,
whose proofs are omitted.

Lemma 5.2 Let F and F± be defined by (3.19)-(3.22) and (3.24)-(3.27),
respectively.

Then the following assertions hold:

(i) for each ε ∈ (0, ξ0
2p), we have that 0 < ξ0−p ε ∑ ξ− < ξ0 < ξ+ ∑ ξ0+p ε

and
0 ∑ F− ∑ F ∑ F+ in [0,1);

(ii) as ε ↓ 0, F± → F uniformly on [0,1).

Lemma 5.3 Let F and F± be defined by (3.37) and (3.41), respectively.
Then for each ε ∈ (0, 1), 0 ∑ F− ∑ F ∑ F+ in [0,1),

and as ε ↓ 0, F± → F uniformly on [0,1).

Finally, we proceed to the proof of the existence of two positive numbers
a± and two classical solutions f± = f±(ξ) of problem (3.5)-(3.7).

Proof. First of all, since we are concerned with the solutions f± satisfying
0 ∑ f± ∑ 1, we may modify the function φ = φ(s) for large s > 1 to haveZ 1

1

φ0(s)
s

ds = 1. (5.13)

This corresponds to the condition A in [AtP], p. 370. The existence of a−
and f− follows from the same argument used in [AtP], since ξ is replaced by
ξ+2ε in equation (3.1) and ξ+2ε is nonnegative in [0,1). Here, we consider
only a+ and f+. Let ε ∈ (0, a

8) and let ã ∈ [34a, 5
4a]. Since 2ε < ã, by the

same argument used in [AtP], Theorem 1, there exists a unique b(ã) > 0 and
a unique classical solution f(ξ) = f(ξ; ã) of the following boundary value
problem:

(φ0(f)f 0)0 +
1

2
(ξ − 2ε)f 0 = 0 in [0, ã), (5.14)

f(0) = b(ã), f(ξ) → 0, φ0(f)f 0(ξ) → 0 as ξ → ã, (5.15)

and f(ξ) > 0, f 0(ξ) < 0 in [0, ã). (5.16)

Obviously in (5.15), ξ tends to ã from below. Moreover, b(ã) is monotoni-
cally increasing and continuous in ã on [34a, 5

4a]. Therefore, in view of the
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intermediate value theorem, in order to prove the existence of a+ and f+,
it is sufficient for us to show that b(3

4a) < 1 < b(5
4a). For this purpose, we

define the function F (ξ; ã) (ξ ≥ 0) by

F (ξ; ã) =

Ω
f(ξ; ã) if 0 ∑ ξ < ã,

0 if ξ ≥ ã.
(5.17)

Suppose that b(3
4a) ≥ 1. Then, it follows from the same comparison argument

as in the proof of Lemma 5.1 that F (ξ) ∑ F (ξ; 3
4a) in [0,1), where F (ξ) is

given by (3.4). This yields that a ∑ 3
4a, a contradiction. Similarly, suppose

that b(5
4a) ∑ 1. Then, by the same comparison argument, we have that

F (ξ; 5
4
a) ∑ G+(ξ) in [0,1), where G+(ξ) is given by (5.9). This yields that

5
4a ∑ a + 2ε(< 5

4a), a contradiction. Thus we conclude that b(3
4a) < 1 <

b(5
4a).
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