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Abstract

We consider a class of fractional weakly singular integro-differential equations
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Here Dδ

Cap is the Caputo differential operator of order δ > 0 and n := ⌈αp⌉
is the smallest integer greater or equal to the highest fractional order αp. We
assume that: 0 ≤ α0 < α1 < · · · < αp ≤ n, 0 ≤ θj < αp, 0 ≤ κj < 1,
j = 0, . . . , q, with p ∈ {1, 2, . . . } and q ∈ {0, 1, . . . }, the given functions di (i =
0, . . . , p−1), Kj (j = 0, . . . , q) and f are continuous on their respective domains,
0 ≤ n0, n1 < n, bk ∈ (0, b] (k = 1, . . . , l) and b̄i ∈ (0, b] (i = 0, . . . , n− 1).

Following [1], we reformulate (1)–(2) as a Volterra integral equation of the
second kind with respect to the fractional derivative D

αp

Capy. We then regularize
the solution by a suitable smoothing transformation and solve the transformed
integral equation by a piecewise polynomial collocation method on a mildly
graded or uniform grid. We show the convergence of the proposed algorithm
and present global superconvergence results for a class of specific collocation
parameters. Finally, we complement the theoretical results with some numerical
examples.
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