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Geometric Integration aims to devise numerical methods able to reproduce, in the
discrete setting, a number of relevant geometric features of the continuous problem
at hand. The case of Hamiltonian systems is among the most interesting due, on
the one hand, to the numerous applications in different disciplines and, on the other
hand, to the long standing problem of stability in celestial mechanics.

Symplectic methods have had a primary role during the past decades. The fact
that each step of integration is arranged by a canonical (or symplectic) transformation
has some relevant consequences in the numerical solution yn, such as the volume
preservation properties of the flow in the phase space and the conservation of all
quadratic first integrals, if any, of the original differential problem. What about non
quadratic constant of motions like, for nonlinear problems, the Hamiltonian function
itself? Though a symplectic method cannot conserve the energy function precisely,
it possesses a weaker stability property referred to as long time energy conservation.
More precisely, under suitable assumptions, the error in the energy function is, for
h < h0,

H(y(tn)) −H(yn) = O(nhe−h0/h) (1)

and therefore remains under control as long as the covered time interval nh, satisfies
for example nh ≤ e−h0/2h. A similar result may be extended to all the other first
integrals in a completely integrable Hamiltonian system.

Looking at (1), one notices that the extension of the integration interval over long
times requires the reduction of the stepsize, and this evidently contrasts with the
classical idea of stability in Numerical Analysis initiated by Dahlquist’s studies and
inherited from the rooted theories of Poincaré and Liapunov.

A question then naturally arises about whether the stability behaviour descending
from symplecticity and epitomized by (1) may be extended for large stepsizes, outside
of a domain where the asymptotic results in (1) are applicable. This question is
reinforced by the present-day studies on alternative integration techniques that aim
to provide precise conservation properties over infinite time intervals, independently
of the size of h. These include the recently devised energy-preserving Runge-Kutta
methods called HBVMs and their generalization composed by the class of Linear
Integral Methods (LIMs), capable of conserving any number of first integrals.

We propose a few numerical examples involving symplectic as well as first integrals
preserving methods (HBVMs and LIMs) and intended to show that the long time
simulation of Hamiltonian system is a branch of research far from being over.


